逆浸透膜と溶質との親和性評価

:水晶振動子マイクロバランスを用いた新測定技術の開発

鈴木 祐麻

山口大学大学院創成科学研究科

概 要 海水淡水化を含む多くの分野で RO 膜の重要性が今後一層高まることを踏まえ,数多くの研究者が高性能 RO 膜の開発に取り組んでいる。しかし,既存の RO 膜を凌駕する RO 膜の開発には至っておらず,この理由として溶質の膜 透過メカニズムが解明されていないことが挙げられている。既存の逆浸透膜(RO 膜)を凌駕する RO 膜を開発するために は,RO 膜による除去率が低い溶質の膜透過メカニズムを解明し,活性層の化学構造に関する明確な開発指針を作成す ることが必要である。そこで,本研究の最終目的を,水晶振動子マイクロバランス(QCM)の水晶振動子に RO 膜の活性層 のみを固定化し,"活性層と溶質の親和性"を定量評価する新技術を確立することに設定した。その第一ステップとして, RO 膜の活性層を選択的に固定化できていることを確認するために活性層内のカルボキシ基を測定した結果,下記の知見が得られた。

- ・水晶振動子自体の表面には微小な凸凹があるのに対して、ポリアミド活性層を固定した水晶振動子の表面はスムーズであり、ポリアミド活性層が均一に固定されていることが分かる。また、ポリアミド活性層を固定した水晶振動子の表面をX線光電分光で測定した結果、全てのポイントにおいて水晶振動子に由来する金は~0.02 atom%と小さく、ポリスルホン支持膜に由来する硫黄は~0.5 atom%であった。これらの結果から、本研究で使用した方法によりポリアミド活性層は水晶振動子全体を均一に覆っており、N,N-ジメチルホルムアミドによりポリスルホンはほぼ完全に溶解除去されていることが確認できた。
- ・初期 CsCl 濃度を 1 mmol/L から 5 mmol/L に増加して得られた値を比較することで, CsCl 濃度が R-COO 濃度に与える 影響を検討した。その結果,得られた R-COO 濃度は CsCl 濃度に依存せずに一定であった。この結果は,初期 CsCl 濃 度が 1 mmol/L でも式(1)に示したイオン交換反応が十分に起こることを示している。

 $R-COOH + Cs^{+}_{(w)} \rightarrow R-COO^{-}Cs^{+}_{(p)} + H^{+}_{(w)}$ (1)

・初期 CsCl 濃度 1 mmol/L で pH4.0~9.0 における R-COO 濃度を求めた。 QCM を用いて測定した R-COO 濃度は既存 のラザフォード後方散乱分光法 (RBS)を用いて測定した結果と同様の挙動を示し、さらに両手法の結果はよく一致して いることが分かった。この結果から、 QCM を用いた本手法は簡易に RO 膜の電荷密度を測定する手法として有効である ことが実証された。

今後は、今回得られた実験手法を用いて有機汚染物質と活性層との親和性定量評価を行い、溶質の除去率に及ぼす 分配係数の役割を定量的に解明する。さらに、得られた知見に基づいて、次世代のポリアミド系 RO 膜の開発や新素材の 開発を行う際の指針を提供する。

1.緒 言

海水淡水化を含む多くの分野でRO膜の重要性が今後 一層高まることを踏まえ,数多くの研究者が高性能 RO 膜 の開発に取り組んでいる。しかし,既存の RO 膜を凌駕する RO 膜の開発には至っておらず,この理由として溶質の 膜透過メカニズムが解明されていないことが挙げられてい

る。既存の逆浸透膜(RO 膜)を凌駕するRO 膜を開発する ためには、RO 膜による除去率が低い溶質の膜透過メカニ ズムを解明し、活性層の化学構造に関する明確な開発指 針を作成することが必要である。そこで、本研究の目的を、 "活性層と溶質の親和性"を定量評価する新技術を確立 することに設定した。本研究では水晶振動子マイクロバラ ンス(QCM)の水晶振動子に RO 膜の活性層のみを固定 化し、活性層に分配した溶質の重量を直接測定すること を試みた。本報告では、RO 膜の活性層を選択的に固定 化できていることを確認するために行った活性層内のカル ボキシ基の測定結果を中心に報告する。

2. 実験方法

2.1 対象 RO 膜

本研究で対象とした RO 膜は, ポリアミド複合 RO 膜である日東電工(株)の ESPA2 膜である。この RO 膜を RBS で分析し, ポリアミドの密度を 1.24 g/cm³と仮定⁽¹⁾して求めたポリアミド層の化学組成, 平均厚さ, そして R-COOH に関する情報⁽²⁾を Table 1 にまとめる。

2.2 ポリアミド活性層の水晶振動子への固定

本研究で使用した水晶振動子は,約 100 nm のチタン 下地の上に電極材料として金を約 300 nm スパッタリングし た電極直径 5 mm の 9 MHz AT カット水晶振動子(セイコ ー・イージーアンドジー(株))である。水晶振動子は実験 に使用する前に,(1) 10 分の紫外線オゾン洗浄 (UV/Ozone Cleaner-ProCleaner[™] Plus,バイオフォース ナノサイエンス社),(2) 超純水:28%アンモニア水:30% 過酸化水素を5:1:1の体積比で混合した水溶液(75℃)へ の30分の浸漬,(3) 超純水によるリンス,(4) 高純度窒素 による乾燥,そして(5)10分の紫外線オゾン洗浄の順番で 洗浄した。

RO 膜のポリアミド活性層は 100 nm 以下と非常に薄く機 械的強度が弱いため, ~50 μm のポリスルホン膜および 不織布により支持されている。このことを踏まえ,本研究は 下記の手順を用いてクリーニングを行った水晶振動子へ のポリアミド活性層の固定を行った(Fig. 1)。まず,不織布 をピンセットで剥がした後に、水晶振動子とポリアミド活性 層が面するようにステンレス316製の枠組みを用いて水晶 振動子とRO 膜を固定した。この際, RO 膜の水晶振動子 への密着性を高めることを目的として、エタノールでRO膜 を平らに伸ばした。次に, N,N-ジメチルホルムアミド 2 mL を枠組みの内側に滴下することでポリスルホンを溶解除去 した。溶解時間は1分とし、1分後にキムワイプ(キンバリ ークラーク社) で吸収することにより N,N-ジメチルホルムア ミドを取り除いた。そして、この一連の作業を合計 25 回繰 り返した後にポリアミド活性層と水晶振動子の密着性を高 めるために 12 時間自然乾燥し、その後超純水で十分にリ ンスした。

Table1. Elemental composition, active layer thickness, and R-COOH ionization behavior of the active layer of ESPA2 RO membrane⁽²⁾

Elemental composition ^a	Polyamide layer thickness ^b	R-COOH information				
		$C_{ m T, R-COOH}$ c	W_1^{d}	p <i>K</i> a,1 ^d	W ₂ ^d	p <i>K</i> a,2 ^d
[-]	[nm]	[mol/L]	[-]	[-]	[-]	[-]
$C_{0.47}H_{0.31}O_{0.11}N_{0.10}Cl_{0.015}$	86	0.38	0.40	4.95	0.60	6.50

^a The H/C ratio was assumed to be 0.67 (value for fully aromatic polyamide)

^b Polyamide layer thickness was modeled as a Gamma distribution with the assumption that the density of the polyamide is 1.24 g/cm^{3 1)}.

^c The total concentration of carboxy (R-COOH/R-COO⁻) group

^d w_i represents the fraction of R-COOH having pKa=pK_{a,i}

Fig. 1. Schematic of the procedures used for the isolation of active layers of ESPA2 RO membrane on a quartz crystal microbalance sensor. (a) The polyester backing is peeled off from the active layer and polysulfone support. (b) The membrane coupon minus polyester backing is placed against the QCM sensor with the active layer facing the sensor and secured to each other using a custom SS316 assembly, and (c) the polysulfone support is dissolved using dimethylformamide.

2.3 R-COO⁻濃度の測定

ポリアミド活性層を固定した水晶振動子をディップセル QA-CL3(セイコー・イージーアンドジー(株))に固定し, 1~5 mmol/LのCsCl水溶液を500 mL入れたガラスビーカ ーに浸した。そして、恒温水循環装置により水温を23℃に 保ち、マグネチックスターラーを用いて水溶液をゆっくりと 攪拌しながら、CsOH あるいは HCl水溶液で pH を変化さ せた際の共振周波数と共振抵抗値の変化を水晶振動子 測定システム QCM922A(セイコー・イージーアンドジー (株))を用いて測定した。

R-COO 濃度を測定する際の具体的な手順およびその 妥当性を, pH9.0 における R-COO 濃度を測定した場合を 例に説明する。まず, CsOH を添加することにより, CsCl を 含む水溶液の pH を 9.0 に調整した。pH の上昇に伴い R-COOH の一部が脱プロトン化して R-COO となり, 式(1) に示すイオン交換反応により Cs⁺がポリアミド内に取り込ま れる。

$$R-COOH + Cs^{+}_{(w)} \rightarrow R-COO^{-}Cs^{+}_{(p)} + H^{+}_{(w)}$$
(1)

ここで、添え字(w)および(p)はそれぞれ水中およびポリ アミド内を示している。Cs⁺がポリアミド内に取り込まれた結 果,水晶振動子に固定されたポリアミドの重量が増加する ため、式(1)の進行は共振周波数の低下をモニタリングす ることで把握することができる。次に、共振周波数が安定 したことを確認した後に、HCIを添加することにより pH を 3.5 に調整した。Coronell は⁽³⁾市販 RO 膜の分析・モデリン グを行い、それぞれの RO 膜に 2 種類存在する R-COOH の酸解離定数 pKa は 4.8±0.8 および 7.8±1.7 の範囲にあ ると報告している。つまり、pH を 3.5 に下げることにより式 (1)の逆反応である式(2)が進行し、ほぼ全てのカルボキシ 基が R-COOH として存在すると考えることができる。

$$R-COO^{-}Cs^{+}_{(p)}+H^{+}_{(w)} \rightarrow R-COOH+Cs^{+}_{(w)}$$
(2)

そして,式(2)が進行するに伴い Cs⁺が水中に放出されて ポリアミドの重量が減少するため,共振周波数は増加す る。 QCM により測定した共振周波数変化 Δf [Hz]は、共振抵抗値が一定であるならば、式(3)に示す Sauerbrey の式により質量変化 Δm [ng]に変換することができる。

$$\Delta m = -\frac{A\sqrt{\mu_q \rho_q}}{2F_0^2} \Delta f = -1.07 \,\Delta f \tag{3}$$

ここでAは水晶振動子の電極面積(0.196 cm²), μ_q は 水晶のせん断応力(2.95×10¹⁰ kg/(m·s²)), ρ_q は水晶の密 度(2.65×10³ kg/m³), F_0 は基本共振周波数(≈ 9 MHz)で ある。さらに,式(4)により Δm から R-COO 濃度(C_{R-COO} -[mol/L])を算出した。

 $C_{\rm R-COO^{-}} = \frac{\left(\Delta m \times 10^{-9} / 131.9\right)}{\left(2.5 \times 2.5 \times \pi \times 86 \times 10^{-12}\right)} = 0.00449 \times \Delta m$ (4)

ここで、右辺の分母は水晶振動子に固定されたポリアミ ドの体積[L]であり、分子は pH の変化に伴う Cs⁺と H⁺のイ オン交換反応に携わった Cs⁺のモル数[mol]である。ただ し、式(1)および(2)から分かるように Cs⁺と H⁺の重量差が Δm に反映されることを踏まえ、Cs⁺のモル数を算出する際に は Cs の原子量(132.9)からHの原子量(1.0)を差し引いた 131.9を用いていることに注意されたい。

R-COO・をプローブする対イオンとして Cs+を選択した理 由は2つある。まず1つめの理由は、本手法では式(1)およ び(2)に示したイオン交換反応に伴う重量変化を QCM に より測定するため、出来るだけ原子番号が大きく重い元素 をプローブとして使用することで精度の高い結果が得られ るためである。そして2つめの理由は水和水の影響を最小 限に抑えるためである。ポリアミドの誘電率は水のそれより 小さいため、水和したイオンがポリアミドに取り込まれる際 には一部の水和水は除去されると考えられる。しかし、そ の程度は不明であるため,水中における水和数ができる だけ小さいイオンをプローブとして用いることが望ましい。 アルカリ金属イオン(Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺)の場合, 水中 にてこれらのイオンに水和している水分子の数は原子番 号が大きくなるにつれて減少し、Cs+では1個以下になる(4)。 つまり、これらのアルカリ金属イオンの中で重量が最も重く 水和水が最も少ない Cs⁺を用いることで、水和水に起因す る R-COOの測定誤差を最小限に抑えることができる。

繰り返しになるが,本手法では重量変化に伴う共振周 波数変化からポリアミド内の R-COO 濃度を算出している ため,式(1)および(2)に示したイオン交換反応以外の反応 によるポリアミドの重量変化が十分に小さいことを確認して おく必要がある。例えば, HCl により pH を 3.5 に下げた際 には,一部の R-NH2 がプロトン化されて R-NH3⁺となり,式 (5)に従って CI-がポリアミド内に取り込まれてポリアミドの重 量が変化すると予想される。

 $R-NH_2 + Cl^-_{(w)} + H^+_{(w)} \rightarrow R-NH_3^+ Cl^-_{(p)}$ (5)

しかし, 市販 RO 膜の総 R-COOH 濃度(R-COOH と R-COOの合計)は総 R-NH2 濃度(R-NH2と R-NH3+の合 計)より十分に高いこと³⁾, そして Cl⁻の原子量は 35.4 であ り Cs+の原子量 132.9 と比べて小さいことを踏まえると,式 (5)によるポリアミドの重量変化は小さく, R-COO 濃度の測 定に与える影響は無視できると考えられる。また,ポリアミ ド内に存在するCs⁺の一部はCl⁻とイオン対(Cs⁺Cl⁻)を形成 していると考えられる。しかし、ポリアミドへの Cs⁺の分配は その低い誘電率により抑制される(dielectric exclusion^{(5),(6)}) ためにポリアミド内の Cs+Cl-濃度は水溶液中の Cs+濃度 (1~5 mmol/L)より低いこと、そして3.2節にて明らかにする ようにポリアミド内の R-COO 濃度は水溶液中の Cs+濃度よ り十分に高いことを踏まえると、Cs+Cl によるポリアミドの重 量変化も R-COO-Cs+に比べて十分に小さいと考えられる。 これらのことを踏まえると、pH を変化させた際のポリアミド の重量変化のほぼ全ては、式(1)および(2)に示したイオン 交換反応に起因すると結論づけることができる。

3. 結果および考察

3.1 水晶振動子へのポリアミド活性層の固定

水晶振動子およびポリアミド活性層を固定した水晶振 動子を走査型電子顕微鏡(JSM-7600F,日本電子(株)) で観察した結果を Fig. 2 に示す。水晶振動子自体の表面 には微小な凸凹があるのに対して,ポリアミド活性層を固 定した水晶振動子の表面はスムーズであり,ポリアミド活 性層が均一に固定されていることが分かる。また,ポリアミ ド活性層を固定した水晶振動子の表面を X 線光電分光 (K-Alpha⁺,サーモフィッシャーサイエンティフィック社)で 複数ポイント測定した結果,全てのポイントにおいて水晶

Fig. 2. Representative SEM surface images of QCM sensors (a) before and (b) after isolation of active layers of ESPA2 RO membrane

振動子に由来する金は~0.02 atom%と小さく、ポリスルホン 支持膜に由来する硫黄は~0.5 atom%であった。これらの 結果から、本研究で使用した方法によりポリアミド活性層 は水晶振動子全体を均一に覆っており、N,N-ジメチルホ ルムアミドによりポリスルホンはほぼ完全に溶解除去され ていることが確認できた。

3.2 R-COO-濃度の測定

ポリアミドを固定した水晶振動子を用いて実験する前に, ポリアミドを固定していない水晶振動子を用いて pH が共 振周波数と共振抵抗値に与える影響を調べた。その結果, pH3.5-9.5 の範囲では共振周波数と共振抵抗値は pH に 影響を受けないことが分かった。この結果は,次段落に結 果を示す実験で得られた共振周波数と共振抵抗値の変 化は,水晶振動子ではなく水晶振動子に固定されたポリ アミドに起因していることを意味している。

この結果を踏まえ、ポリアミドを固定した水晶振動子を 用いて実験を行った。まず、1 mmol/LのCsClを含む水溶 液を用いて pH6.0 における R-COO-濃度を求めた際に得 た共振周波数と共振抵抗値のデータの一部を Fig. 3(a)に

Fig. 3. Representative changes in resonance resistance (solid lines) and resonance frequency (short dash lines) during QCM measurement for the determination of R-COO⁻ concentration in polyamide active layer at (a) pH6.0 and (b) pH9.5

示す。まず, 共振抵抗値は実験を通してほぼ一定の値と なっていることから, 共振周波数変化 Δf から質量変化 Δm を算出する際には Sauerbrey の式(式 3)が適用可能であ ると言える。次に共振周波数の変化に着目すると, pH を 6.0から3.5 に下げた際には共振周波数が上昇し, 3.5から 6.0 に上げた際には共振周波数が低下していることが分か る。この変化は, 式(1)および(2)に示したように, Cs⁺とH⁺が イオン交換されることでポリアミドの重量が変化することに 起因する。また, pH を上昇させた際の共振周波数の低下 幅と pH を低下させた際の共振周波数の増加幅がほぼ同 じとなっていることから, イオン交換反応が可逆反応である ことも確認できる。

次に, pH9.5 における R-COO 濃度を測定したデータの 一部を Fig. 3(b)に示す。Fig. 3(a)と Fig. 3(b)との比較から 分かるように, pH6.0 における R-COO 濃度を測定したデ ータと pH9.5 における R-COO 濃度を測定したデータとで は, 異なった挙動が見られた。まず共振抵抗値について であるが, 先述したように, pH6.0 における R-COO 濃度を 測定した際は pH を上げた際も下げた際も共振抵抗値は 変化しなかった。それに対して、pH9.5 における R-COO 濃度を測定した際は、pH を 9.5 から 3.5 に下げた際のみ 共振抵抗値が一定であり、pHを3.5から9.5に上げた際に は共振抵抗値が増加した。この共振抵抗値の増加を引き 起こしている現象は不明である。しかし、可逆反応ではな いこと(可逆反応ならば 9.5 から 3.5 に下げた際に共振抵 抗値が減少するはずである)、そして pH を 3.5 から 9.5 に 上げた際には毎回共振抵抗値が増加したことを踏まえる と、pH を変化させた際に膜と水晶振動子の密着性が変化 したことが要因と推測される。Sauerbrey の式(式(3))が適 用できるのは共振抵抗値が一定に保たれている場合のみ である。従って、Sauerbrey の式および式(4)により R-COO 濃度を求める pH 領域は、pH を変化させた際の共振抵抗 値が一定であった 9.0 以下とした。

次に、本実験で用いた測定手順では CsOH および HCl を用いて pH の調整を繰り返すために水溶液中の CsCl 濃 度が徐々に上昇することを踏まえ、初期 CsCl 濃度を 1 mmol/Lから 2 mmol/Lあるいは 5 mmol/Lに増加して同様 の実験を行うことで、CsCl 濃度が R-COO 濃度に与える影 響を検討した。pH5.0 および 8.0 で得た結果を Fig. 4 に示 す。Fig. 4 から分かるように、得られた R-COO 濃度は CsCl 濃度に依存せずに一定であった。この結果は、初期 CsCl 濃度が 1 mmol/L でも式(1)に示したイオン交換反応が十

分に起こることを示している。この結果を踏まえ,初期 CsCl 濃度 1 mmol/L で pH4.0~9.0 における R-COO 濃度 を求めた。その結果を Fig. 5 に示す。Fig. 5 には, RBS を 用いる既存手法で R-COO 濃度を測定した結果⁽²⁾も示した。 既存手法の結果は pH が高くなるにつれて徐々に R-COO 濃度が増加しているが, QCM を用いて測定した R-COO 濃度も同様の挙動を示し,さらに両手法の結果は よく一致していることが分かる。この結果から, QCM を用 いた本手法は簡易に RO 膜の電荷密度を測定する手法と して有効であることが実証された。

Fig.4. Influence of aqueous CsCl concentration on the changes in resonance frequency at pH5.0 and pH8.0. Error bars indicate standard deviation of six replicates

Fig. 5. Concentrations of deprotonated carboxy group (R-COO⁻) in the polyamide active layers of ESPA2 membrane as a function of aqueous pH. Orange circles represent R-COO⁻ concentrations measured with an existing method and derived from our previous study⁽²⁾. Error bars of orange circles indicate standard deviation of triplicate. Continuous line represents the modeling result using parameters summarized in Table 1. Blue hexagons represent R-COO⁻ concentrations obtained in this study. Error bars of blue hexagons indicate standard deviation of six replicates.

4.結 言

本研究では、水晶振動子マイクロバランス(QCM)を用 いて市販 RO 膜のポリアミド活性層に含まれる R-COO濃 度を測定することを試みた。R-COOの対イオンとして Cs⁺ を選択し、R-COOHが脱プロトン化して R-COO⁻Cs⁺になる 際の重量変化を QCM で測定して R-COO⁻濃度を求めた 結果、既存の手法を用いて測定した結果とよい相関が得 られた。本研究で検討した手法の最大の特徴は既存の手 法に比べて大掛かりな装置を必要としないことである。つ まり、本手法を用いれば、市販 RO 膜のポリアミド活性層に 含まれる R-COO⁻に起因する電荷密度を簡易に測定でき ることが分かった。

Reference

- X. Zhang, D. G. Cahill, O. Coronell and B. J. Mariñas, " Absorption of water in the active layer of reverse osmosis membranes", *J. Membr. Sci.*, **331**, 143–151 (2009)
- 2) R. Tanaka, T. Suzuki and M. Niinae, "Modeling the pH effect on rejection of sodium chloride by reverse

osmosis membranes", Bull, Soc, Sea Water Sci. Jpn., Accepted.

- O. Coronell, M. I. González, B. J. Mariñas, and D. G. Cahill, "Ionization behavior, stoichiometry of association, and accessibility of functional groups in the active layers of reverse osmosis and nanofiltration membranes", *Environ. Sci, Technol.*, 44, 6808-6814 (2010)
- E. L. Cussler, "Diffusion: MassTransfer in Fluid Systems, 3rd ed.", Cambridge University Press, United States of America (2009)
- S. Bandini and D. Vezzani, "Nanofltration modeling: the role of dielectric exclusion in membrane characterization", *Chem. Eng. Sci.*, 58, 3303-3326 (2003)
- A. Szymczyk and P. Fievet," Investigating transport properties of nanofiltration membranes by means of a steric, electric and dielectric exclusion model", *J. Membr. Sci.*, 252, 77–88 (2005)

Quantitative Evaluation of the Partition Coefficients of Solutes between Polyamide Active Layers of RO Membranes and Water Using Quartz Crystal Microbalance

Tasuma Suzuki

Yamaguchi University

Summary

The objective of this study was to measure the charge density in polyamide active layer of a commercial reverse osmosis membrane. To achieve this objective, cesium ion (Cs^+) was chosen as a counter ion of deprotonated carboxy group (R-COO⁻), and the mass of Cs^+ that associates with R-COO⁻ was measured with a quartz crystal microbalance (QCM). Experimental data showed that the charge density obtained in this study at the pH range between 4.0-9.0 was in good agreement with those obtained with an existing method using Rutherford backscattering spectrometry (RBS). RBS is a powerful but not easily accessible technique. Therefore, the method investigated in this study can be used as a relatively easy and simple way that permits one to measure the charge density of polyamide active layer.