Regulation of Cellular Mg$^{2+}$ by SLC41 Family and Pathological Mechanism for Its Abnormality

Takahiro Iwamoto1, Satomi Kita1, Hideaki Tagashira1, Yusuke Gotoh1, Yuji Arai2

1Department of Pharmacology, Faculty of Medicine, Fukuoka University,
2Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center

Summary

Mg$^{2+}$ is an important divalent cation and plays an essential role in various cellular functions, such as cellular energy metabolism, ion channel activity, and enzyme activity. Mg$^{2+}$ homeostasis primarily depends on the balance between intestinal absorption and renal excretion. Mg$^{2+}$ deficiency or abnormal Mg$^{2+}$ metabolism is related to various cardiovascular diseases. Recently, various candidate genes of Mg$^{2+}$ transporter are reported, but their functional roles are still well unknown. We first treated mice with three kinds of magnesium diets (low-magnesium diet, normal-magnesium diet, or high-magnesium diet) for 4 weeks, and found that the expression levels of SLC41A1 and SLC41A2 in aorta were dependent on the Mg$^{2+}$ intake. Therefore, the aim of the present study is to determine the physiological roles of SLC41A1 and SLC41A2. We also found that phenylephrine-induced contraction was reduced in isolated aorta from low-magnesium-fed mice. Furthermore, we next generated SLC41A1/SLC41A2-knockout mice. Interestingly, phenylephrine-induced contraction was reduced in isolated aorta from SLC41A2-knockout mice fed with normal-magnesium diet. When SLC41A2-knockout mice were treated with high-magnesium diet, the phenylephrine-induced contraction was recovered. These results suggest that SLC41A1/SLC41A2 play an important role in vascular function. Further work will be required to define the pathological role of SLC41A1/SLC41A2 in cardiovascular diseases.