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Fig. 1 Structure of S. cerevisiae HKR1/Hkr1p and the truncated portion which is independently expressed and endows
resistance to HM-1.

HKRI is an intronless gene with a 5.4 kb ORF encoding a mucin-like type I transmembrane protein, Hkrlp.

Shown are the N-terminal signal peptide sequence (SS), the extracellular tandem repeats which are commonly found in most mucins (TR),
the Hkr1p-Msb2p homology domain (HMH), the highly hydrophobic transmembrane domain (TM), the EF hand consensus and the leucine
zipper motif. The internal methionine residue which could function as a translational initiation site in the C-terminal domain is marked as
“M”. The promoterless, 3’ portion of HKRI (including the terminator) was used for HM-1 resistance assay (I). The same region with a
mutation at the position of ''3’Met (replacing ATG with TAG) was also tested (II).
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Fig. 2 HM-1 resistance assay of transformants overexpressing the sequence (I) or (II).
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(A) The promoterless 3’ portion of HKRI (HKRI"™) was introduced into S. cerevisiae cells with the multicopy plasmid vector, pYEHKR"..
HKRI™ was inserted into the vector either in the forward direction with the LEU2 marker, or in the reverse direction (opposite to
LEU2).

(B) Transformants overexpressing the sequence (I) (see Fig. 1) exhibited strong HM-1 resistance showing that the 3’ portion of HKR1 was
independently expressed and conferred HM-1 resistance on S. cerevisiae cells. Transformants overexpressing the sequence (II), where
the methionine codon ATG was replaced with a stop codon TAG, were sensitive to HM-1. HM-1-producing Lindnera mrakii was
spotted over the lawn of the S. cerevisiae transformants. See the clear zones formed around spotted L. mrakii.
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Fig. 3 Detection of promoter activity by fluorescent protein reporter assay.

The 160 bp-long exonic sequence of HKRI (nt. ¥3249 to #3408) was ligated to the reporter gene mUkG1 which encodes the fluorescent
protein "monomeric Umikinoko-Green 1", then inserted into the 2 um DNA-derived multicopy vector and introduced into S. cerevisiae
cells. Exponentially growing transformants were observed with a fluorescence microscope.

The ADH1 promoter of S. cerevisiae was used as a positive control and promoterless mUkG1 was a negative control.
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Fig. 4 Deletion analysis for the promoter activity detected in the 160 bp-region between the HindllI site and the ATG codon
(3409 ATG)

The 160 bp-sequence between the HindIll site and the ATG codon (**® ATG) was sequentially deleted.

Each deleted sequence was ligated to the reporter gene lacZ of E. coli and inserted into the YCp-based plasmid vector. Activity of -
galactosidase which represents the promoter activity was measured with o-nitrophenyl-f3-D-galactopyranoside (ONPG) as a substrate and
Miller units were calculated.
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Fig. 5 Constructs for promoter assay of various length of exonic sequence upstream *®ATG ('3’Met) of HKRI.

The upstream sequence of the ATG codon corresponding to the internal methionine (''3’Met) of Hkrlp was sequentially deleted (A, B, C,
D and E) and ligated to the reporter gene, mUKG1 of Sarcophyton sp. (soft coral) or lacZ of E. coli.

A : nt. #1 to #3408 (3408 bp)

B : nt. ©2614 to #3408 (795 bp)

C : nt. ©2997 to #3408 (412 bp)

D : nt. #3249 to #3408 (160 bp)

E : nt. #3357 to #3408 (52 bp)
The 2 um DNA-derived multicopy plasmid vector was used for fluorescence microscopy while the centromere plasmid was used for 3-
galactosidase assay.
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Fig. 6 Fluorescence microscopy for promoter assay of various lengths of exonic sequence in the upstream region of **®ATG
('¥"Met) of HKRI.

The regions A, B, C, D and E shown in Fig. 5 were inserted into the 5' end of the coding sequence of the fluorescent protein gene mUkG1
using the 2 um DNA-based multicopy vector and introduced into S. cerevisiae cells. Exponentially growing cells were observed with a
fluorescence microscope. The clone carrying promoterless mUkG1 was a negative control.
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Fig. 7 B-Galactosidase assay for the quantitative analysis of various lengths of exonic sequence in the upstream region of
MOATG (1'¥"Met) of HKRI.

The regions A, B, C, D and E shown in Fig. 5 were ligated to the lacZ gene and inserted into the YCp-based plasmid vector, then used for
the transformation of S. cerevisiae cells. Exponentially growing cells were used for b-galactosidase assay. The clone carrying promoterless

lacZ was a negative control.
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Fig. 8 Recovery of suppressed promoter activity under high osmotic pressure conditions with NaCl.

The coding sequence of mUkG1 was driven by the putative promoter regions A, B, C, D and E shown in the Fig. 5. Using the multicopy
plasmid vector, each sequence was introduced into S. cerevisiae cells and the transformants were treated with 0.25 M NaCl for 18 hours.
Quantitative measurements of promoter activity were done by flow cytometry. The numbers of fluorescence positive cells of those
transformants were compared to the ones cultured without NaCl. The mUkG1 gene driven by the ADH1 promoter was used as a control
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Summary

HKRI was originally isolated from the genome of Saccharomyces cerevisiae as a gene that confers resistance to
HM-1 killer toxin produced by the killer yeast Lindnera mrakii (synonym Hansenula mrakii). HKRI is an intronless
gene with a 5.4 kb ORF encoding a mucin-like multidomain transmembrane protein, Hkrlp. Hkrlp contains a
consensus sequence of EF hand, a calcium-binding motif and the DNA-binding leucine zipper motif in its cytoplasmic
tail, and has actually been known as an osmosensor of the HOG MAP kinase complex. We recently found
that HKR1 has another cryptic promoter in its exon and is transcribed not only from the promoter in the 5’ upstream
region but also from the region around the 3330th nucleotide (nt. #3330) from the translation initiation site. ~In addition,
it has been confirmed that the transcriptional activity of the exonic promoter is silenced by its upstream sequence within
the exon of HKRI. In this study, we investigated whether the suppressed transcription is restored by external conditions
such as osmotic pressure by using reporter assay systems. Plasmids containing various length of the exonic promoter
region were constructed and a fluorescence protein gene or the /acZ gene of Escherichia coli was ligated to each promoter
sequence, introduced into S. cerevisiae cells, then expression levels were evaluated by measuring the fluorescence
intensity or B-galactosidase activity. The maximum transcriptional activity was observed when the reporter genes were
ligated to the 410 bp-long region of HKR] starting at the nt. #3000 through the ATG (**?ATG) which corresponds to the
internal translation initiation site (''*’"Met). A significantly lower transcriptional activity was detected when the reporter
genes were ligated to the region between the nt. #2600 and **®ATG. These results suggest that the region between the
nt. #3000 and the nt. #3330 is the core of the HKR! exonic promoter and its upstream sequence functions as a silencer-
like regulator. Interestingly, the suppressed transcription was partially restored when the transformants were cultured
under high osmotic pressure conditions. These observations suggest a novel mechanism of eukaryotic gene regulation
with multiple promoters, one of which is even located within an exon and is conditionally activated to express a latter
portion of the protein. It could be a remarkable example of how a limited number of genes can generate more complex

biological phenomena.



