Circadian Regulation of Blood Pressure and Heart Rate by Na⁺/Ca²⁺ Exchanger

Takahiro Iwamoto, Takayuki Nemoto, Tomo Kita, Yasuharu Shinoda

Department of Pharmacology, Faculty of Medicine, Fukuoka University

Summary

In mammals, including humans, blood pressure and heart rate are known to exhibit a circadian rhythm, and it has been suggested that abnormal circadian rhythm is a factor in the onset of hypertension and ischemic heart disease. Recently, we have found that Na⁺/Ca²⁺ exchanger-mediated intracellular Ca²⁺ oscillation is primarily involved in the formation of circadian rhythm in the suprachiasmatic nucleus (SCN), which is the central clock. In fact, NCX2deficient mice (NCX2^{+/-}) and NCX2/3 double-deficient mice (NCX2^{+/-};NCX3^{-/-}) exhibited disturbed behavioral rhythms due to abnormal circadian rhythms. NCX is a bidirectional transporter that is controlled by membrane potential and transmembrane gradients of Na⁺ and Ca²⁺, and is involved in the maintenance of intracellular Ca²⁺ homeostasis and the formation of Ca²⁺ signals. In this study, we examined the role of NCX in circadian rhythm control of blood pressure and heart rate using various NCX-deficient mice (systemic and organ-specific). In systemic NCX1^{+/-} and NCX2^{+/-} mice, the circadian rhythm of blood pressure was normal, comparable to wild-type control mice. In vascular smooth muscle-specific NCX1-deficient mice, a significant decrease in blood pressure was observed, but the circadian rhythm of blood pressure was normal. On the other hand, in systemic NCX3^{-/-} mice, enhanced blood pressure was significantly suppressed during the active phase compared to wild-type control mice, and the onset of the active phase under the dark condition tended to be slightly earlier. Thus, NCX3^{-/-} mice exhibited abnormal circadian rhythm of blood pressure. This result indicates that NCX3 plays an important role in maintaining normal circadian rhythm of blood pressure, suggesting the importance of NCX3-mediated Ca²⁺ signaling in the circadian clock center (SCN). Further studies on disease models using NCX3^{-/-} mice will provide new insights into the relationship between circadian rhythm abnormalities and the onset of cardiovascular diseases.