Design of the self-organized hosts as a specific sensor of alkaline or alkaline earth metal ions

Yoshiaki Kobuke and Shin-ichi Kugimiya

Graduate School of Materials Science, Nara Institute of Science and Technology

Summary

Development of the strategy for molecular design of self-organized hosts for alkaline or alkaline earth metal ions has been established. Prehost molecule 1 has

been prepared according to the strategy. Prehost 1 has two salicylic acid groups at the both ends of tri(ethylene glycol). Prehost 1 has been self-organized in the presence of uranyl ion to give the real host molecule 2. Binding properties of 2 were studied for alkaline metal

or alkaline earth metal ions by ¹H-NMR in DMSO-d6. Relative equilibrium constants of **2** with Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺, Na⁺, or K⁺ were summarized in Table 1.

Self-organized host 2 showed the maximum equilibrium constant for Sr2+ (ionic

radius: 1.18 Å). For smaller alkaline earth metal ions, such as Mg^{2+} and Ca^{2+} , the relative equilibrium constants K_{rel} were

Table 1 . Relative equilibrium constants of 2Sr with alkali and alkaline earth metal ions.

	Mg ²⁺	Ca ²⁺	Sr ²⁺	Ba ²⁺	Na ⁺	K ⁺
	0.72	1.00	1.18	1.35	1.02	1.38
Krel	1/900	1/4	1	1/20	1/13	1/33

decreased dramatically. In the case of larger alkaline earth metal ion, Ba^{2+} , K_{rel} were decreased also. These results indicate that self-organized host **2** provides hole size suitable for Sr^{2+} . Equilibrium constant of **2** with Sr^{2+} was measured with cryptand [2.2.1], which has a very strong affinity for Sr^{2+} (log K=6.1). By the

competition experiment, affinity of 2 for Sr²⁺ is 50 times larger than that of cryptand [2.2.1]. In order to obtain ion sensing ability, prehost 3 was synthesized with a flurorescent probe in the spacer. In fluorescence experiment, uranyl 3 self-organized

host showed 10 times larger affinity with Sr^{2+} than K^{+} . Based on these results, it is indicated that a specific sensor of Sr^{2+} has been developed.