Effects of salts and minerals on SOD inhibition of ubiquinol oxidation
Tsutomu Nakayama, Shigenori Kumazawa
School of Food and Nutritional Sciences, University of Shizuoka

## Summary

Ubiquinone ( $CoQ_0 = 2,3$ -Dimethoxy-5-methyl-1,4-benzoquinone) and hydrogen peroxide ( $H_2O_2$ ) were formed in the process of oxidation of ubiquinol ( $CoQ_0H_2 = 2,3$ -Dimethoxy-5-methyl-1,4-hydroquinone) in a phosphate buffer. Among eight mineral salts investigated, FeSO<sub>4</sub>, MnSO<sub>4</sub> and CuSO<sub>4</sub> increased the ubiquinone formation. NaCl had no effect. Chelators such as DTPA (diethylenetriaminepentaacetic acid) decreased the amount of ubiquinone and  $H_2O_2$ . This suggests that trace amount of Fe ion in the buffer increased the ubiquinol oxidation. The amount of  $H_2O_2$  was almost equal to that of  $CoQ_0$ , indicating that the  $H_2O_2$  formation was coupled with the  $CoQ_0$  formation. Copper-zinc superoxide dismutase (CuZn-SOD) and manganese superoxide dismutase (Mn-SOD), which accelerate the dismutation of superoxide ( $2O_2$ - + 2H+  $\rightarrow$   $H_2O_2$  +  $O_2$ ), inhibited both the  $CoQ_0$  formation and the  $H_2O_2$  formation in the presence of DTPA. We propose that  $CoQ_0H_2$  oxidation occurs as a chain reaction with superoxide ( $O_2$ -) as the chain carrier and that SOD inhibits this reaction by lowering the superoxide concentration.

$$CoQ_0H_2 + O_2^- \rightarrow CoQ_0^-$$
 (semiquinone radical) +  $H_2O_2$  (1)  
 $CoQ_0^- + O_2 \rightarrow CoQ_0 + O_2^-$  (2)  
The sum of (1) and (2) is:  $CoQ_0H_2 + O_2 \rightarrow CoQ_0 + H_2O_2$ 

It is interesting that the active sites of SODs consist of the minerals which increased the ubiquinol oxidation. In animal cells, Mn-SOD is located in the mitochondria, and CuZn-SOD is located in the cytoplasm. Ubiquinols are also located in both the mitochondria and the cytoplasm. Similar inhibitory effects of Mn-SOD on the  $CoQ_0$  formation and the  $H_2O_2$  formation at the same enzymatic activity as in the case of CuZn-SOD imply that these enzymes have a common antioxidative role in different parts of the cells.