Characterization of high affinity Na⁺ K⁺ transporter gene from higher plants Nobuyuki Uozumi, Shoshi Toriyama (Bioscience Center, Nagoya University) ## Summary The ions concentration in plant cell is crucial for plant osmoregulation, which correlated to Na⁺ tolerance and dehydration resistance. K⁺ is the most abundant cation in higher plant cell at the concentrations of ca. 100mM, whereas Na⁺ concentration inside cell maintains at the lower level. Na⁺ uptake seems to occur without any specific mechanism due to high energy gradient of Na⁺ between the inside cell and outside. The molecular mechanism for plant Na⁺ uptake remains unknown. Recently, a complementary DNA from wheat was isolated that encodes a Na⁺-driven high-affinity K⁺ uptake transporter. It suggests that plant cell possesses the Na⁺ uptake mechanism to keep the Na⁺ concentration inside at certain level. To understand the role of Na⁺ and K⁺ uptake mechanism and Na⁺K⁺transporter more precisely, we tried to clone the Na⁺K⁺transporter gene from Arabidopsis thaliana cDNA library on the basis of the data of wheat Na⁺K⁺transpoter amino acid sequence. The predicted molecular size of the protein was about 58KD. It seems to have 10-12 transmembrane segment. Its sequence and its hydropathy profile were very similar to those of the wheat one. ArHKT1 is a single-copy gene in ArBidopsis thaliana genome. The cation selectivity of ArHKT1 by voltage clamping ArHKT1 in Xenopus oocytes showed that inward Na⁺ current at the hyperpolarized mambrane potential. However, the K⁺current was not detected although the wheat HKT1 conferred the K⁺ uptake, which is a significant difference in K⁺ selectivity between ArHKT1 and wheat HKT1 This report suggests that ArHKT1 may provide one of the pathways for Na⁺ uptake to keep low concentrations of Na⁺ inside cell although it remains unknown whether Na⁺ is needed or not for plant cell growth. Our result in this study offer insight into a molecular pathway of Na⁺ uptake in higher plants.