Salt-tolerant mechanism of a protozoan, Euglena gracilis Z

Yoshihisa Nakano, Kazutaka Miyatake, Fumio Watanabe⁽¹⁾ and Shigeo Takenaka⁽²⁾

Department of Applied Biological Science, Osaka Prefecture University

(1)Department of Food and Nutrition, Kochi Women's University

(2)Laboratory of Nutrition and Food Science, Hagoromo Gakuen Junior College

Summary

Elevation of the CO₂ level in the atmosphere is a major problem for the earth and therefore many meteorologists are worrying about changes in earth cllimate. To reduce the level of CO₂, we proposed the biological fixation of CO₂ via photosynthesis and established the microalgal system using the protozoan, *Euglena gracilis* Z. In our experiments, this organism proliferated in high CO₂ concentrations such as in exhausted gas from a electric power station in which higher plants or other algae could not survive. In addition, the *E. gracilis* contained very rich nutrients such as protein, unsatuated fatty acids and vitamins. However, there is little information available on the salt-tolerance of *E. gracilis*. This study is anattempt to elucidate the salt-tolerant mechanism of *E. gracilis* and to establish an application for the breeding of salt-tolerant plants or microalgae by using molecular biological techniques.

Proliferation of *E. gracilis* was inhibited at 100 mM NaCl concentration, but the cells could survive up to 250 mM NaCl. Under these conditions, *E. gracilis* changed its cell shape from tear drop to globular within 30 min and the packed-cell volume also decreased. These changes may due to adaptation to salt stress.

We found that trehalose, a disaccharide, was formed rapidly from paramylon, a reserve polysaccharide of this organism due to the salt conditions. ¹⁴-C labelled paramylon converted stoichiometrically to the trehalose, suggesting *E. gracilis* forms trehalose as a compatible solute. The amount of trehalose changed in respond to changes in external salt concentrations.

From these results, we concluded E. gracilis has a salt-tolerant mechanism which produces trehalose as a compatible solute.