α- Adrenergic inhibition of the β-adrenoceptor-dependent chloride current in guinea-pig ventricular myocytes

Tsuguhisa Ehara, Ikuo Iyadomi and Kenji Hirahara Department of Physiology, Saga Medical School, Nabeshima 5-1-1, Saga 849, Japan

SUMMARY

- 1. α_1 -Adrenoceptor-mediated inhibition of the β -adrenoceptor-dependent Cl $^-$ current was investigated in guinea-pig ventricular myocytes with the patch clamp technique.
- 2. The Cl $^-$ conductance activated by noradrenaline (0.1 to 10 μ M) with an α_1 -blocker (prazosin, 5 μ M) was significantly greater than that activated by noradrenaline alone. Phenylephrine and methoxamine, α_1 -agonists, exerted an inhibitory effect on the Cl $^-$ conductance activated by isoprenaline. The doseresponse relationship for isoprenaline and the Cl $^-$ current activation, which was fitted to the Hill equation with a half-maximum concentration ($K_{1/2}$) of 28 nM in control, was shifted to higher doses in the presence of 30 μ M phenylephrine; $K_{1/2}$ increased to 86 nM.
- 3. The interaction of α_1 and β -agonists on Cl⁻ current was also observed on the single channel level; in some of the outside-out membrane patches, phenylephrine (50 μ M) depressed the activity of single Cl⁻ channel which was induced by 5 μ M adrenaline.
- 4. Phenylephrine was ineffective on the Cl⁻ conductance induced by forskolin (0.5 to 5 μM), an activator of adenylate cyclase. The Cl⁻ conductance persistently activated by isoprenaline in GTPγS-loaded cells was also insensitive to phenylephrine.
- 5. The results suggest that the observed α₁-adrenergic attenuation of β-adrenergic response is not primarily due to inhibition of adenylate cyclase activity. The α₁-adrenergic action may interfere with the processes leading to the enzyme activation in the β-adrenergic pathway.
- 6. The phenylephrine action persisted when the capacity of intracellular Ca²⁺-buffer was extremely increased with 20 mM BAPTA, indicating that Ca²⁺ ions are not involved in the observed α₁-action.