THE ROLE OF INCREASE IN Na CONCENTRATION IN CSF IN ARTERIAL PRESSURE REGULATION IN DEHYDRATED RATS: INTERACTION WITH ARTERIAL BAROREFLEXES.

Hiroshi Nose, Mien Chen, and Taketoshi Morimoto Dept. of Physiol., Kyoto Pref. Univ. of Med., Kyoto 602, Japan

Summary

To analyze the mechanism of the greater decrease in mean arterial pressure (MAP) at a given decrease in [Na]csf (Δ MAP/ Δ [Na]csf) in dehydrated rats, we measured [Na]csf with a Na sensitive microelectrode in the lateral ventricle (LV) and MAP during infusion (INF) of hypertonic arterial cerebrospinal fluid (ACSF) (~400 mOsm) into the LV of rats with and without sino-aortic denervation (SAD). [Na]csf in both groups increased significantly ~1 min after the start of INF and attained the maximal increases of 16.4±2.4 meg/kg H2Oin innervated rats and 20.5±1.3 meg/kg H2Oin SAD rats (n=10) at the end of INF. There was no significant difference in $\Delta[Na]$ csf between the two groups throughout the experiment. On the other hand, MAP in SAD rats increased to a significantly higher level than in innervated rats from 6.0 to 17.0 min after the start of INF (p<0.05) and the increase at the end of INF was 19.0±2.3 mmHg and 7.7±1.4 mmHg in the SAD and innervated rats, respectively (p<0.01). Changes in MAP in both groups were highly correlated with $\Delta[Na]$ csf throughout the experiment, but and the slope was steeper by two-folds in SAD rats (Δ MAP=0.99 Δ [Na]csf +0.78, r=0.97, p<0.001) than that in innervated rats (ΔMAP=0.49Δ[Na]csf+0.80, r=0.97, p<0.001) and was identical to that in dehydrated rats (Δ MAP=1.03 Δ [Na]csf+0.25, r=0.96, p<0.001).

To clarify the mechanism of the decrease in MAP during hypotonic INF into the LV of dehydrated rats, [Na]csf, MAP, CVP (mmHg), and cardiac output (CO, ml/min 100g) were measured in dehydrated rats when [Na]csf was gradually reduced to the predehydrated level. Total vascular conductance (TVC, (ml/min 100g)/mmHg) was calculated as TVC=CO/(MAP-CVP). MAP and ∞ decreased and TVC increased as [Na]csf decreased with high correlations ($r^2=0.82-0.94$, p<0.001).

Thus, the decrease in MAP at a given decrease in [Na]csf was greater in dehydrated state which might be caused by the reduced gain of arterial baroreflexes. The increase in [Na]csf is important to maintain arterial pressure by causing systemic vasoconstriction and preventing the decrease in \bigcirc 0 during dehydration.