Role of Sodium Ion Exchange in Plasma Membrane in Cardiac Hypertrophy

Takenobu Kamada, Masatsugu Hori, Toshifumi Kagiya,
Masafumi Kitakaze, Kunimitsu Iwai, Hiroshi Sato, Seiji Takashima
The First Department of Medicine, School of Medicine, Osaka University,
Suita 565, Japan

Summary

To test whether Na+/H+ (sodium/hydrogen) exchange plays an important role in neurohumoral signal transduction in cardiac hypertrophy, we studied the effects of Na+/H+ exchange inhibitors on ion exchange and protein synthesis in rat cardiomyocytes stimulated with neurohumoral factors. Norepinephrine enhanced Na+/H+ exchange through α₁-adrenergic receptor, leading to intracellular alkalinization and increase in Ca²⁺ concentration. Na⁺/H⁺ exchange inhibitors, i. e. amilolide and ethyl-isopropyl-amilolide (EIPA), inhibited norepinephrineinduced protein synthesis. Angiotensin II increased intracellular pH and Ca²⁺ through Na⁺/H⁺ exchange activated by protein kinase C, and enhanced protein synthesis associated with expression of the protooncogenes (c-fos, c-myc). Amilolide also attenuated the angiotensin II-induced protein synthesis. Furthermore, arginine-vasopressin increased intracellular pH and Ca2+ through V1-receptor, which was attenuated by EIPA. Thus, we conclude that Na+/H+ exchange is involved in signal transduction through α_1 -adrenergic, angiotensin II and V_1 receptor in rat cardiomyocyte growth.