Mechanisms of Action of Hormones and Drugs on NaCl Transport across Renal Tubules (Effects of prostaglandin E₂ on the CNT and CCD)

Masashi Imai, M.D.

Separtment of Pharmacology, Jichi Medical School, Tochigi

- 1. Effects of prostaglandin E_2 (PGE₂) on ion transport were examined by observing the transmural (V_T) and basolateral membrane voltage (V_B) in the in vitro perfused rabbit connecting tubule (CNT) and the cortical collecting duct (CCD).
- 2. Addition of 1 μ M PGE₂ to the bath induced a biphasic response of transmural voltage (V_T), with initial negative V_T deflection followed by positive deflection in the CNT, but monophasic negative deflection in the CCD. Because PGE₂ had no effect on the basolateral membrane voltage (V_B), PGE₂ mainly causes changes in the apical membrane voltage.
- 3. Elimination of Na⁺ from the lumen abolished the PGE₂-induced V_T response in the CNT. In the presence of 10 μ M luminal amiloride, PGE₂ only caused initial negative deflection without causing later positive deflection. The positive V_T deflection induced by PGE₂ in the CCD was also blocked by luminal amiloride.
- 4. Addition of ouabain (0.1 mM) to the bath completely abolished the PGE₂-induced V_T changes in the CNT, indicating that intact Na⁺-K⁺ pump is prerequisite for the V_T response to PGE₂.
- 5. Addition of 2 mM Ba²⁺ to the lumen did not affect biphasic V_T response to PGE₂, indicting that Ba²⁺ sensitive K+ conductance is not involved.
- 6. Basolateral addition of 0.1 mM 8-(p-chlorophenylthio)-cAMP inhibited only the negative V_T deflection induced by PGE₂.
- 7. The positive V_T deflection was blocked by basolateral addition of 50 μ M 8-(N,N-dimethylamino) octyl-3,4,5-trimethoxy-benzoate hydrochloride (TMB-8), an inhibitor of intracellular Ca²⁺ release. But elimination of luminal Ca²⁺ did not affect the biphasic response to PGE₂.
- 8. These findings suggest that the initial negative V_T deflection is caused by an increase in Na⁺ influx across the luminal membrane through an amiloride-insensitive Na⁺ conductive pathway, whereas the later positive deflection is caused by the inhibition of Na⁺ influx through the amiloride-sensitive Na⁺ conductive pathway. The cAMP messenger system may be responsible for the initial negative deflection, whereas an increased intercellular Ca²⁺ released from the store is necessary for the later positive deflection caused by PGE₂. The response in the CCD is comparable to the later response in the CNT.