Development of Potassium and Bromide Ions-memorizing Inorganic Ion-exchangers Head Invesigator Takashi SUZUKI Collaborator Michihiro MIYAKE Collaborator Shizuo SUGITA Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Yamanashi University ## Summary It is difficult to selectively separate and take up small amounts of K⁺ ions from seawater in the presence of a large excess of Na⁺. During investigations of the cation-exchange characteristics of inorganic ion-exchangers, we have discovered that K⁺ ions in aqueous solution are strongly held on some synthetic fluorine tetrasilicic micas by a cation-exchange reaction at room temperature, i.e., some potassium ion-memorizing inorganic ion-exchangers have been prepared. From among the successfully synthesized micas, sodium ion-exchanged taeniolite (Na⁺T; NaMg₂LiSi₄O₁₀F₂·2H₂O) and sodium ion-exchanged hectorite (Na⁺H; Na⁺_{1/3}Mg_{8/3} Li_{1/3}Si₄O₁₀F₂·2H₂O) were found to be promising and the removal behavior of K⁺ ions from a model aqueous solution and practical seawater to the hopeful sampleswas examined by using normal batch-and-column methods. It was found that $Na^+ \rightleftharpoons K^+$ exchange isotherm on Na^+T rises steeply and attains plateau above the diagonal line in the initial stages, which reveals that K^+ ions are extremely preferred over Na^+ ions in the low-concentration region of K^+ ions. The order of K^+ ion selectivity was to be $Na^+H < Na^+T$ in the low-concentration region of K^+ ions. Further, the Na⁺T was found to selectively take up a regular amount of K^+ ions without depending on the concentrations of Na⁺ and K^+ ions in solution. Taking the results into account we can conclude that $Na^{+}T$ can be utilized in the separation and uptake of K^{+} ions from seawater (K^{+} : 380 ppm, Na^{+} : 10500 ppm).