Development of Potassium and Bromide Ions Memorized Inorganic Ion-exchangers

Head Invesigator Takashi SUZUKI
Collaborator Michihiro MIYAKE
Collaborator Shizuo SUGITA

Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Yamanashi University

Summary

To develop potassium ion memorized inorganic ion-exchangers, potassium ions of specially synthesized $KMo_5O_{1.5}OH \cdot 2H_2O$ with tunnel structure or $K_2Mn_4O_8$ and $KMg_2LiSi_4O_{1.0}F_2 \cdot 2H_2O$ with layered structures, have been ion-exchanged for sodium ions in aqueous sodium chloride solutions or for protons in aqueous hydrochloric acid solutions at 70 °C.

Sodium ion-exchanged $\underline{\text{Ma}_x} K_{1-x} \text{Mo}_5 O_{15} OH \cdot 2H_2 O$, $\underline{\text{Ma}_x} K_{1-x} \text{Mg}_2 \text{LiSi}_4 O_{10} F_2 \cdot 2H_2 O$ and proton-exchanged $\underline{\text{H}_x} K_{2-x} \text{Mn}_4 O_8$ were found to have the selectivity for potassium ions in aqueous solution at room temperature.

Especially, it has been found that $\underline{\text{NaMg}}_2\text{LiSi}_4\text{O}_{10}\text{F}_2\cdot 2\text{H}_2\text{O}$ (x=1) has an outstanding selectivity for potassium ions in solution, i.e., the $\underline{\text{NaMg}}_2\text{LiSi}_4\text{O}_{10}\text{F}_2\cdot 2\text{H}_2\text{O}$ has the feasibility of a superior potassium memorized ion-exchanger.

To develop bromide ion memorized exchangers, $Pb_{10}(P0_4)_6Br_{2-x}\underline{C1_x}$ has been synthesized and the anion-exchange characteristics of chloride ions in it for bromide ions in aqueous solutions have been investigated. The details will be discussed in following reports.