SELECTIVE ADSORPTION OF TRACE COMPONENTS IN SEAWATER WITH SYNTHETIC INORGANIC ION EXCHANGERS

Mitsuo ABE, Masamichi TSUJI, Yasushi KANZAKI Department of Chemistry, Faculty of Science, Tokyo Institute of Technology

Summary

The pH titration curves of monoclinic antimonic acid (M-SbA) showed apparently monobasic acid for the systems of alkali metal ions/H⁺. Th uptake order of the metal ions was $K^+ < Rb^+ < Cs^+ < Na^+ < Li^+$ throughout the pH range studied. The low uptakes of K^+ , Rb^+ , Na^+ , and Cs^+ at high pH might be due to steric or ion sieve effects for large unhydrated cations on M-SbA. Thermodynamic data were derived for Li⁺/H⁺ exchange on M-SbA from pH titration curve.

M-SbA shows high ion-exchange capacity and selectivity for lithium ions. NMR and X-ray studies were carried out for lithium-exchanged M-SbA with different lithium ion uptakes. The results indicated that the lithium positions exchanged were located at regular octahedral to those having 3-fold symmetry with increasing lithium uptake. Two possible positions for the 3-fold symmetry are thought of: one is the tetrahedral hole of oxygen and the other is a distorted octahedral hole. The structural invariance of M-SbA during the ion-exchange process and the small size of the ion-exchange position were found to account for the high selectivity of the lithium ions.