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Fig. 1. Glutamine stimulates the promoter activities of SREBP targets. Hep G2 cells (4) and Caco-2 cells (B) were transfected
with 200 ng of the reporter construcs consisting of the indicated gene promoters and 200 ng of pEF-B-Gal. The cells were
cultured with medium A (4) or medium B (C) for 36 h and then refed with the low amino acid medium supplemented with the
indicated concentration of glutamine for 12 h in the presence or absence of sterols (10 pg/ml of cholesterol plus 1 pg/ml of
25-hydroxycholesterol). Lucifarase assays were performed as described previously . The promoter activities without
glutamine addition are represented as 1. All data are presented as means £ S.D. values of three independent experiments

performed in triplicate. *, p < 0.05; **, p <0.01.
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Fig. 2. Glutamine increases the mRNA levels of SREBPs and O-glycosylated Spl in the nucleus. A, Hep G2 cells were
cultured with the low amino acid medium for 4 h and then refed with the medium supplemented with 40 mM glutamine for 2,
4, 8, or 12 h and total RNA was isolated. Real-time PCR analysis was performed, and relative mRNA levels were obtained
after being normalized to GAPDH mRNA. The mRNA levels at 0 time are represented as 1. All data are presented as means +
S.D. values of three independent experiments performed in triplicate. B, Hep G2 cells were cultured with the low amino acid
medium supplemented with 40 mM glutamine for 12 h in the presence or absence of sterols (10 mg/ml of cholesterol plus 1
mg/ml of 25-hydroxycholesterol) or 5 mM azaserine. Real-time PCR analysis was performed, and relative mRNA levels were
obtained after being normalized to GAPDH mRNA. The mRNA levels without glutamine addition are represented as 1. All
data are presented as means + S.D. values of three independent experiments performed in triplicate. *, p < 0.05; **, p < 0.01.
C, Hep G2 cells were cultured with the low amino acid medium supplemented with or without 40 mM glutamine in the
presence or absence of 5 mM azaserine for 12 h. The whole cell extracts were subjected to immunoprecipitation (IP) with
anti-Spl antibody. Aliquots of immunoprecipitates were subjected to SDS-PAGE and immunoblot (IB) analysis with
anti-O-GlcNAc or anti-Sp1 antibodies, and the signals were quantified with a Fujifilm LAS-3000 Luminoimager. Fold change
was calculated by the ratio of the intensity between the O-glycosylated Spl and the whole Spl signals. The ratio in the
absence of both glutamine and azaserine was set as 1. The same results were obtained in more than three separate experiments.
D, Hep G2 cells were cultured with the low amino acid medium for 4 h and then refed with the medium supplemented with 40
mM glutamine for the indicated periods. The nuclear fraction, cytosol fraction, and the whole cell extracts were subjected to

IB with Sp1 anitibody, and the signals were quantified with a Fujifilm
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Fig. 3. Glutamine stimulates the processing of both SREBP-1 and SREBP-2. 4, Hep G2 cells were cultured with medium A
containing 4 mM glutamine for 48 h and refed with the medium containing 40 mM glutamine for the indicated period of time
before harvest. The whole cell extracts were subjected to SDS-PAGE and immunoblotting (IB) with anti-SREBP-1(N) (2A4),
anti-SREBP-2(N) (Rs004), anti-SREBP-2(C) (1C6), or anti-B-actin antibodies. B, Hep G2 cells were cultured with medium A
containing 4 mM glutamine for 40 h and then refed with the medium containing the indicated concentration of glutamine for 4
h. The whole cell extracts were subjected to SDS-PAGE and IB with the antibodies as described in Fig. 44. The same results

were obtained in more than three separate experiments.
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Fig. 4. Treatment with alanine, proline, or glutamate does not stimulate SREBP processing. Hep G2 cells were cultured with

medium A which contained 4 mM glutamine for 48 h and refed with the medium containing the indicated amino acid at a

concentration of 20 mM for 4 h before harvest. The whole cell extracts were subjected to SDS-PAGE and immunoblotting
(IB) with anti-SREBP-1(N), anti-SREBP-2(C), or anti-f-actin antibodies. The same results were obtained in more than three

separate experiments.
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Summary

Glutamine is the most abundant amino acid in stream and involves in many cell function through modulation
of various signaling pathway. In the present study, we have demonstrated that glutamine stimulates HMG-CoA
(3-hydroxy-3-methylglutaryl CoA) synthase mRNA levels, known as SREBP target genes. Glutamine also
up-regulated the expression of SREBPs mRNA, including SREBP-1a, SREBP-1c¢, and SREBP-2. Glutamine
mediated induction of SREBP-1c and SREBP-2 mRNA levels was attenuated while glutamine mediated induction
of SREBP-1a mRNA level was not changed by the treatment with sterols, that suppresses SREBP processing.
The expression of SREBP-1a mRNA, a predominant form of SREBP-1 in most cultured cells and a target of the
general transcription factor Spl, is significantly augmented by an increase in glutamine-induced O-glycosylation
of Spl. In contrast, the increased expression of SREBP targets, including SREBP-1c and SREBP-2, is due to a
stimulation of the processing of SREBP proteins by glutamine. Moreover, time-course experiments demonstrated
that glutamine increased the amount of mature SREBP-1 and SREBP-2 prior to the induction of transcription
levels.

The transport of glutamine into HepG2 cells via a sodium-dependent transporter causes an osmotic swelling
of the cells. Since alanine and prorine were also transported into HepG2 cells via a sodium-dependent transporter,
we tested the effect of these amino acids on SREBP processing. While 20 mM glutamine treatment stimulated
SREBP processing, same concentration of alanine or proline treatment did not influence SREBP processing,
implying that osmotic change dose not involved in the stimulation of SREBP processing by glutamine.

In conclusion, the present study shows that the treatment of glutamine in HepG2 cells causes stimulation of
SREBP-la mRNA expression, which seems to be mediated by the activation of HBP.  Furthermore,
posttranslational processing of SREBP-1 and SREBP-2 is independently stimulated by the treatment of glutamine
through distinct signaling pathway. The remaining question to be clarified is how glutamine stimulates transport

of SREBP/SCAP complex from ER to Golgi. The molecular mechanism of this effect is now under investigation.
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