Production of Carbonates from Removed-K Bittern by Ultrasonic Cavitation Strategy and Application for Phosphor Material

Shinnosuke Kamei, Masakazu Matsumoto

College Industrial Technology, Nihon University

Summary

The objective of this research is to study the production of carbonates from removed-K bittern by ultrasonic cavitation strategy. We focused on dolomite (CaMg(CO₃)₂). Dolomite is a double salt in which calcium carbonate (CaCO₃) and magnesium carbonate (MgCO₃) are regularly combined at a molar ratio of 1:1. By using ultrasonic irradiation, it is advantageous that the particle diameter obtained becomes nano-sized. Therefore, the synthesis of nanomaterial from seawater becomes possible. We reported a new synthetic approach to obtain dolomite and report the synthesis of dolomite phosphor as an application material.

The results obtained in this study are summarized below.

- 1) The use of removed-K bittern only did not result in the single phase of dolomite.
- 2) By adding CaCl₂ and adjusting to 0.5 of the Ca/Mg molar ratio, dolomite could be synthesized.
- 3) By immersing dolomite synthesized from removed-K bittern, the phosphor equivalent to dolomite synthesized from a reagent could be prepared.
- 4) By changing the mixing ratio, it was possible to synthesize dolomite phosphors with various emission.

.