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Fig.1 Principle of total reflection XAFS Fig.2 Scematic representation of the cell
used for XAFS measurements
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Fig.4 Comparison of XANES spectra at Sr
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Fig.3 XANES spectra at K K-edge for

various samples.
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Table 1 XAFS parameters for K* and Sr** in water I
and a cation-exchange resin : /\ /y\ -
Scattering r/ o/ A _ \/ \/ W _
atom A |
2+ 5 C 1 1 1 1 L
Srein H,0 O 2.56 0.099 0 > 7 6 3 10
T T T T T T T
-SO3Sr dry 0 2.40 4.3 0.112 i -803 Sr in water
S 2.66 | 1.45 | 0.069 L
-S05Sr in H,0 o) 255 | 6.6 | 0.106 /\ /Mﬁ
Scattering r/ N o/ A B \/ \/
Atom A -
I ! . ! | . |
K* in H,0 2.69 o3| ¢ 2 4
-SO3K dry 2.69 0.153 Fig.5 zk® spectra for K* and Sr** in
-SOz;K in H,O 2 64 78 0.191 water and in resins soaked in methanol
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Table 2 Electrophoretic migration and zeta potential of a DE micelle

in various electrolytes

solution mobility Z - potential
/1078m?y-1s? / mV
DE 50mM 1.85 337
+10mM Br- 1.73 314
+50mM Br~ 1.04 18.9
+100mM Br- 0.561 10.2
+5mM I 1.38 252
+10mM I~ 1.18 214
+15mM I 1.02 185
+100mM I~ -0.693 -12.6
+50mM SO 2- 0.576 105
+100mM SO 2~ 0.491 8.91
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Fig.6 Change in the edge jump at the Br K-edge with

the concentration of electrolyte added to the subphase.
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Enhancement of ion-exchange selectivity based on evaluation of ion-exchange
equilibiria taking place in interfacial nanospace

Tetsuo Okada and Makoto Harada
Department of Chemistry, Tokyo Institute of Technology

Summary

In the present study, the local structures of cations in cation-exchange resins have been
elucidated, and a novel zwitterionic molecule has been developed.  These studies have aimed at
gaining the molecular features involved in ion-exchange processes and developing separation with
novel selectivity.  The local structures of K* and Sr** in the cation-exchange resins have been
studied by X-ray absorption fine structure (XAFS).  The near edge structures of K" well reflect its
peripherals, and thus some inferences are possible; (1) its local structure in the dried resin is
apparently different from that of the hydrated ion; (2) the former structure is seen for the resin soaked
in methanol but not detected for the resin soaked in water. The detailed analyses of XAFS
spectra have revealed that (1) some of strontium ions in the resin are simultaneously bound by two
sulfonate groups, but the fraction is very small (some %), (2) Sr**is more strongly hydrated even in
the resin than K*, and (3) 36+23 % of total K*and 17+7 % of Sr** form ion pairs with the sulfonate
groups in the resin soaked in water, and the average hydration numbers are 4.0£1.1 and 4.8+0.3,
respectively.

Our previous researches have indicated that zwitterionic ion-exchangers show very interesting
features in ionic separation. A new zwitterionic molecule having two positive and on negative
sites in a molecule (DE) has been synthesized. = DE micelles are intrinsically cationic, and thus
basically migrate toward the cathode in most of electrolytes.  However, very interesting behavior
has been verified that they migrate toward the anode in the presence of large amount of I.  This
strongly suggests that if this molecule is fixed on the solid matrix, it can be used both as a
cation-exchanger and as an anion-exchanger.  Although the ion-exchange properties of this
molecule have been studied by the surface reflection XAFS, it has shown usual ion-exchange
selectivity. Its specific features are worth studying in more details for the developments of

ion-exchange materials with novel separation selectivity.
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