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Scematic representation of the cell
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Fig.4 =-A curves for DTAB and HTAB surface monolayers

a, subphase: 5mM KBr. b, subphase: (1) 5mM KBr, (2)
3mM KBr+2mM KCI, and (3) ImM KBr and 4mM KClI;
monolayer, HTA.
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Fig. 6 (a) Changes in signal intensities obtained at Br K-edge
with the surface molecular area (A) of DTA and HTA.
Subphase, 5mM KBr. (b) Dependence of signal intensity-A
curves on subphase compositions. (1) 5mM KBr, (2) 3mM
KBr+2mM KCI, and (3) 1mM KBr and 4mM KCI with the
HTA monolayer.
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Fig.7 Changes in ion-exchange selectivity of Br™ against CI" with A.
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Design and evaluation of ion-exchange reactions in the nanospace underneath surface
monolayers

Tetsuo Okada and Makoto Harada
Department of Chemistry, Tokyo Institute of Technology

Summary

lon-exchange usually occurs at the interface between ion-exchange materials and solution.
Separation selectivity is a function of the structure of ion-exchange groups, their density, type of
matrices, the nature of a solvent, etc. The distributions of ions at such charged interface are
dominated by electrostatic interaction, which is expected to influence the structures of ions as well.
The Poisson-Boltzmann theory predicts that counterions are condensed in the electrical double
layer and that their concentrations decrease as a function of the distance from an interface. If
we can experimentally probe this area, the understanding of ion-exchange phenomena will be
facilitated and a new design of separation is expected to become possible. Total reflection
X-ray absorption fine structure (XAFS) is a powerful tool to investigate the concentration and
local structures of ions attracted in the vicinity of surface monolayers.  The typical observation
depth is several nanometers, which correspond to the electrical double layer thickness in 1-10 mM
1:1 electrolyte; thus, we can access the interior of the electrical double layer by this method. A
new cell, which has allowed us to measure XAFS spectra of ions attracted by the surface films at
controlled surface pressures (or surface densities), has been designed to investigate ion-exchange
phenomena at the surface monolayer.

When the surface monolayer of HTA or DTA is compressed on the subphase containing Br’,
the signal intensities measured at the Br K-edge should increase in a hyperbolic fashion.
Although the signals follow the predicted hyperbolic curve when A is relatively large (>130 A?),
the departures of experimental values from the curves become obvious when the surface
monolayers are further compressed, and finally the signal intensities are leveled off. This is
caused by the dissolution of the surface monolayer or exclusion of Br from the observation
volume by compression. When the subphase contains both Br™ and CI", XAFS measurements at
Br K-edge allow us to detect ion-exchange equilibria between Br™ and CI" added in a subphase.
The ion-exchange selectivity of Br  over CI" basically increases as the monolayer is compressed,
indicating that CI" is selectively squeezed out by compression because of its larger hydrated ionic
radius. However, at A=ca 100A? an anomaly was detected both for HTA and DTA surface
monolayers. This phenomenon is indicative of a change in the total reflection plane by the

compression of the surface monolayer. This aspect can be utilized to the probing of ionic
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distribution in the electrical double layer.
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