Production and Upgrading of Carbonates from K⁺ Removed Brine –Synthesis of Inorganic Phosphor Based on Carbonate with Controlled Crystal Properties–

Masakazu MATSUMOTO, Shinnosuke KAMEI

College of Industrial Technology, Nihon University

Summary

To develop a utilization system for seawater resources based on the salt production process, a method for recovery and upgrading of Ca and Mg from the concentrated seawater discharge of a salt manufacturer in Japan was examined. From a salt solubility viewpoint, the synthesis of the carbonates by reactive crystallization between the dissolved Ca^{2+} and Mg^{2+} ions in concentrated seawater and CO_2 can be considered as an effective separation/recovery method. In particular, dolomite (CaMg(CO₃)₂), which is the double salt of CaCO₃ and MgCO₃, has a crystal structure that is derived from the structure of the calcite form of CaCO₃ by replacement of Ca²⁺ in the calcite to Mg²⁺, and it is widely used in various industrial fields. Furthermore, if the increase in Mg/Ca ratio and micronization of CaMg(CO₃)₂ can be achieved during the reactive crystallization process, applications as a mother crystal of inorganic phosphor with superior luminescent properties are expected. In this study, to synthesize dolomite (CaMg(CO₃)₂) with desired crystal properties more effectively, the minute gas-liquid interfaces of CO₂ fine bubbles were utilized as new crystallization regions where crystal nucleation is dominant. To classify the production regions of the Ca and Mg carbonates from concentrated seawater derived from salt manufacture discharge by solution pH and temperature ($T_{\rm S}$), CO₂ fine bubbles with an average diameter ($d_{\rm bbl}$) of 40 µm were continuously supplied to removed-K brine, and the Ca and Mg carbonates crystallized at the pH range 5.3 -8.3 and $T_{\rm S}$ range 278 -348 K. Consequently, CaMg(CO₃)₂ with high selectivity was crystallized at the pH range 5.3 – 6.8 and $T_{\rm S}$ range 278 – 298 K, and aragonite form CaCO₃ was preferentially produced at $T_{\rm S}$ > 333 K and the pH values 5.3 and 6.0. Moreover, to select the suitable type of concentrated seawater discharge from the salt manufacturing process for the production of CaMg(CO3)2 with a high Mg/Ca ratio during reactive crystallization, CO_2 fine bubbles with a d_{bbl} of 40 µm were continuously supplied to three concentrated seawater samples, i.e., ED brine, concentrated brine, and removed-K brine, at various CO_2 flow rate (F_{CO2}) values at a solution pH of 6.8 and a T_s of 298 K, and CaMg(CO₃)₂ was crystallized. These samples have different concentration products of Ca²⁺ and Mg²⁺ ([Ca²⁺][Mg²⁺]). In the ED brine, the production of CaMg(CO₃)₂ was confirmed, along with the production of aragonite CaCO3 as a by-product. CaMg(CO3)2 was the dominant product crystallized from the concentrated brine and removed-K brine. The molar concentration of the produced $CaMg(CO_3)_2$ and the Mg/Ca ratio of $CaMg(CO_3)_2$ both increased with increasing $[Ca^{2+}][Mg^{2+}]$ and F_{CO2} . Additionally, to improve the crystal properties of CaMg(CO₃) such as Mg/Ca ratio and particle size, d_{bbl} and F_{CO2} values were varied in removed-K brine at a solution pH of 6.8 and a T_s of 298 K. The results indicated that

minimizing the bubble diameter and the increase in F_{CO2} led to the high-yield crystallization of CaMg(CO₃)₂ fine-particles with higher Mg/Ca ratio. Furthermore, when the obtained CaMg(CO₃)₂ was converted to an inorganic phosphor by immersing it into 0.10 mol/L of a TbCl₃/CeCl₃ mixed solution at 298 K for 60 min, CaMg(CO₃)₂ fine particles with an average size of $3 - 6 \mu m$ and a Mg/Ca ratio of approximately 0.5 were found to be suitable for the synthesis of green inorganic phosphor with a high emission intensity under the experimental conditions employed in this study.