

プロジェクト研究
（1989－1991）

塩化ナトリウム結晶生成のための最適連続晶析装置•操作の基礎的研究

Basic Research on Optimum Continuous Crystallizer and its Operation of Sodium Chloride

The Salt Science Research Foundation

Project Research Report

㿢りルトｻサイエンス研究財団

塩化ナトリウム結晶生成のための最適連続晶析装置•

操作の基礎的研究

研究代表

早稲田大学理工学部

豊倉 賢

研究組織

所 属
早稲田大学
福山大学
岩手大学

氏名
豊倉 賢
原納 淑郎
久保田徳昭

塩化ナトリウム結晶生成のための最適連続晶析装置操作の基礎的研究
 目次

1．緒言 1
2．工業晶析現象と晶析装置•操作の設計 2
$2 \cdot 1$ 工業晶析現象 2
$2 \cdot 1 \cdot a$ 溶液および過飽和溶液の状態 3
$2 \cdot 1 \cdot b$ 核化現象 7
$2 \cdot 1 \cdot \mathrm{~b} \cdot \mathrm{i}$ ）核化現象の分類 7
$2 \cdot 1 \cdot b \cdot i i) ~$ 核発生速度と装置内の核化現象 11
$2 \cdot 1 \cdot b \cdot i i i)$ 装置内の核発牛速度 13
$2 \cdot 1^{\circ} \mathrm{C}$ 結晶成長現象 17
$2 \cdot 1 \cdot{ }^{\circ} \cdot \mathrm{i}$ ）結晶成長現象の概要 17
$2 \cdot 1^{\circ} \mathrm{C} \cdot \mathrm{ii}$ ）拡散段階の物質移動 18
$2 \cdot 1 \cdot{ }^{\circ} \cdot$ iii）表面昆析現象 19
$2 \cdot 1 \cdot C \cdot i v)$ 総括結晶成長速度 21
$2 \cdot 2$ 晶析装置設計理論 21
$2 \cdot 2 \cdot a$ 回分型晶析装置 21
$2 \cdot 2 \cdot b$ 連続晶析装置 23
$2 \cdot 2 \cdot b \cdot i)$ 笎全潉合型装置 24
$2 \cdot 2 \cdot b \cdot$ ii）連続分級取り出し混合型晶析装置 27
$2 \cdot 2 \cdot b \cdot i i i)$ 連続分級層型晶析装置 29
 34
3．塩化ナトリウム水溶液の濃度と密度 40
$3 \cdot 1$ 実験装置と万江 41
3.2 結果と考察 42
4．塩化ナトリウム結晶成長についてのその場観察実験 44
$4 \cdot 1$ 実験方法 44
$4 \cdot 2$ その場観察の結果 44
$4 \cdot 3$ 顕微鏡下の結晶成長速度と過飽和度の関係 45
44 ステップ移動速度 45
5．小型逆円錐型装置による塩化ナトリウム
結晶成長速度と結晶成長速度係数 46
$5 \cdot 1$ 実験 46
$5 \cdot 1 \cdot$ a 結晶成長 46
$5 \cdot 1 \circ$ b 結晶溶解 47
$5 \cdot 2$ 実験結果 48
$5 \cdot 2 \cdot a$ 結晶成長実験結果の整理法 48
$5 \cdot 2 \cdot \mathrm{~b}$ 成長 実験結果 49
$5 \cdot 2 \cdot \mathrm{C}$ 溶解実験結果と考察 53
$5 \cdot 3$ 考察 55
$5 \cdot 3 \cdot a$ 結晶成長過程に与える物質移動抵抗 55
$5 \cdot 3 \cdot \mathrm{~b}$ 晶析速度データに基づく晶析器効率についての検討 56
$5 \cdot 3{ }^{\circ} \mathrm{C}$ 線図による晶析器の効率の推算 57
6．撹抖槽型晶析装置における塩化ナトリウムの晶析速度 59
$6 \cdot 1$ 一次核発生速度 59
6.2 二次核発生速度 60
$6.2 \circ$ 実験 60
$6 \cdot 2 \cdot a \cdot i)$ 二次核発生速度の測定 60
$6 \cdot 2 \cdot a \cdot \mathrm{ii})$ 擋拌翼と粒子の衝突に対するスケールアップ実験 61
$6 \cdot 2 \cdot \mathrm{~b}$ 実験結果の整理 64
$6 \cdot 2{ }^{\circ} \mathrm{C}$ 実験結果および考察 65
$6 \cdot 2 \cdot \mathrm{C} \cdot \mathrm{i}$ ）二次核のSEM写真 65
$6.2 \circ \cdot 0$ ii）二次核累積個数 N の経時変化 66
$6.2 \circ 0 \cdot 0$ iii）二次核発生速度 β ． 68
$6.2 \circ \mathrm{~d}$ 想濁粒子の樈汼翼に对する重实 69
$6 \cdot 2 \cdot \mathrm{~d} \cdot \mathrm{i}$ ）衝突痕 69
$6020 \mathrm{~d} \cdot \mathrm{ii})$ 衝奂効率とストークス数の関係 70
$6 \cdot 3$ 結晶成長速度 73
$6 \cdot 3 \cdot \mathrm{a}$ 実験およびデ‥クの整理江： 73
$6 \cdot 3 \cdot b$ 結果および考察 73
 73
 74
 75
6.4 撹拌槽内の晶析現象の検討 77
$6 \cdot 4 \cdot \mathrm{a} \mathrm{Ns} \cdots$ Os 曲線の形 77
$6 \cdot 4 \cdot$ b 実装置データと実験デーータの比較 78
$6 \cdot 4 \cdot \mathrm{C}$ 結晶非懸濁系のテスト 78
 79
$6 \cdot 4 \cdot \mathrm{e}$ 成長データと生成絬晶の比較 84
7．塩化ナトリウム結晶の晶析速度と過飽和溶液内に懸濁する 微結晶の晶析速度への影響 86
$7 \cdot 1$ 実験 86
$7 \cdot 1 \cdot a$ 実験装置 86
$7 \cdot 1 \cdot b$ 実験方法 90
$7 \cdot 1 \cdot b \cdot i) \quad$ 原料溶液の調整 90
$7 \cdot 1 \cdot b \cdot i i) ~$ 結晶成長速度の測定 90
$7 \cdot 1 \cdot \mathrm{~b} \cdot \mathrm{iii})$ 次核発生速度の測定 91
$7 \cdot 2$ 実験結果および考察 91
$7 \cdot 2 \cdot a$ 結晶成長速度 91
$7 \cdot 2 \cdot b$ 一次核発生速度 95
$7 \cdot 2 \cdot \mathrm{C}$ 結晶成長速度と 次核発生速度 99
8．連続晶析装置による塩化ナトリウムの晶析 102
$8 \cdot 1$ 分級層型晶析装置および操作法 102
$8 \cdot 1 \cdot a$ 実験装䈯 102
$8 \cdot 1 \cdot b$ 実験操作 104
$8 \cdot 2$ 速続かくはん型き気験装官にによる思析りま験 105
$8 \cdot 2 \cdot a$ 実験装笽 105
$8 \cdot 2 \cdot b$ 実験操作 106
$8 \cdot 3$ 結果および考察 107
$8 \cdot 3 \cdot \mathrm{a}$ 分級層型晶析装置 107
$8 \cdot 3 \cdot a \circ$ i）塩化ナトリウム綵晶の析川速度 107
$8 \cdot 3 \cdot a \cdot \mathrm{ii})$ 生成結楽の粒柊分布 110
$8 \cdot 3 \circ$ b 混合層型晶析裴置 114
$8 \cdot 3 \cdot \mathrm{~b} \circ \mathrm{i}$ ）監化ナトリウム結晶の析川速度 114
$8 \cdot 3 \cdot b \cdot \mathrm{ii})$ 牛：成結思の档柊分布 114
$8 \circ 4$ 晶析特性操作線 115
8•4•a Table 8－1に示された条件下゙の実験結果の考察 118
 119
 121
9．晶析装置•操作の開発（総括） 124
$9 \cdot 1$ 晶析操作。装置の選定 124
$9 \cdot 1 \cdot$ a 操作法の選定 124
$9 \cdot 1 \cdot a \cdot i)$ 所望特性結晶製品の夋定生産について 124
$9 \cdot 1 \cdot a \cdot$ ii）生産効率について 126
 128
$9 \cdot 1 \cdot b$ 晶析装置形式の選定 128
9•1•b•i）ステイショナリ－晶析装置 128
$9 \cdot 1 \cdot b \cdot \mathrm{ii})$ ダイナミック晶析装置 128
－運般層型 128
○完全混合型 128
○分級層型（ $)$ 128
－分級属型（II） 129
$9 \cdot 2$ 晶析装置の検討，開発のための晶析テストと収得データの適用について 129
$9 \cdot 2 \cdot a$ 所定結唱牛成のためのラボテスト 129
$9 \cdot 2 \cdot a \circ i)$ 渦飽利の牛：成江： 129
$9 \cdot 2 \cdot a \cdot \mathrm{ii})$ ラボテスト装㯰 130
$9 \cdot 2 \cdot b$ 唱所速度庆測のためのラボ装䠐 130
$9 \cdot 2 \cdot b \cdot i)$ 圎濁多結晶が存在しない場合の実測法 130
$9 \cdot 2 \cdot b \cdot$ ii）想濁多結晶が存在する場合の実測法 130
$9 \cdot 2 \cdot b \cdot$ iii）核化•成長速度に其づく思析装罩•操作の設訃法 131
9.3 バイロットブラントテストに基づく連続晶析装置の設計 131
$9 \cdot 4$ 最適連続晶析操作法の開発－ 132
10．結言 136

塩化ナトリウム結晶生成のための最適連続晶析装置•操作の基礎的研究

舁稻田大学理工学部	豊倉賢，平沢泉
福以大学工学部	原納淑郎，山本英二
大阪市立大学工学部	矢野元威
岩手大学工学部	久保田徳昭，清水健司

工業晶析理論は近年著しい発良をしており，理学的絬晶化理論では解明できなかった化学装置内の晶析現象も明かになってきている インブロジェクト研究では，この工業晶析理論に基づいて，監化ナトリウムの品析理論を整理し，この理論との対応において塩化ナト リウム結晶化現象および「：業装罱•操作閉発のための甚碳的矿究を行い，塩化ナトリウム の新しい晶析技術の開発法を提案した。これらの概要を以下に示す。

第1章では本研究プロジェクトの背景となる工業晶析について倹討し，第2章ではその概要を要約した。

第3章では本研究の基礎となる塩化ナトリウム水溶波の飽和濃度の測定法について検討 し，溶液濃度と密度との関係の相関式を求め，それから簡易飽和濝度の実測法を提出した

第 $4 \cdot 5$ 章では塩化ナトリウムの結唱成長を郬置系および流動層系にて研究し，共存する他結晶の影響の少ない状況での過飽和溶液内の成長速度を求めた。結晶成長機構は拡散と表面晶析の2つの段階で検討され，結晶成長速度は雨段階の速度から推算されることを提案した。

第6章では大きさの異なる3種の撹排畨にて材啠の異なる撹排翼を用いて，塩化ナトリ ウムの核化•成長速度に刘する実験的研究を行った。この研究では結晶相瓦の衝突による核化の少ない，結晶の懸濁密度の比洨的小さい状態で具験を行い，結晶成長速度を求める とともに核発生速度に対する撹汼の影響を呵らかにした。

第7章では工業晶析装置とほぼ同程度の高懸濁状態に保つために結晶－回分，溶液－連続 の半回分晶析装置を考案し，塩化ナトリウム結晶の核発生速度と結晶成長速度を求めた。 ここで得られた速度は懸濁密度の低い状態で得られたものと異なっていた。これは高側濁密度のためで，工業装置内におけるものとほぼ同じであると考えられる。

第8章では塩化ナトリウムの連続晶析実験を行い，定常操作時の晶析速度，結晶の粒径分布を実測した。これらのデータから装置容積尚りの留析量と製品粒径によって示される操作点を設計線図上に点緅し，I業思析裴值からのデ・ータと比較した。これらより，工業晶析装置から得られる結桨の生成量と製品粒柊は「業装置データから推算されると結論さ れた。連続晶析装置とその操作条件設計のための新しい開発法について第9章で提出した。

第10章では本ブロジェクト研究結果は程化十トリウム系のみでなく広く連続晶析技術 の発展に貢献すると要約した。

FUNDAMENTAL STUDY FOR DESIGN OF OPTIMUM CONDITIONS CRYSTALLIZER AND OPERATION FOR SODIUM CHLORIDE CRYSTAL

Waseda University Ken Toyokura, Izumi Hirasawa
Fukuyama University Yoshio Harano,
Eiji Yamamoto
Osaka City University Mototake Yano
Iwate University Noriaki Kubota,
Kenji Shimizu

The theory of industrial crystallization has been rapidly developed, recently and makes clear crystallization in chemical plants which is not turned out by scientific crystallization theory. This research project was started to make crystallization technique ol sodium chloride developed on industrial crystallization theory. The recent studies of these theories were discussed on initial step of this project, and crystallization of sodium chloride and fundamental researches for development of industrial crystallizers and operations were studied on industrial crystallization theory. A method for development of a new crystallization technique of sodium chloride was proposed. The outline of them are summarized as followings;

The first chapter discusses on the correlation between this research project and industrial crystallization theory for understanding of back ground of this project, and industrial crystallization theory is summarized in the second chapter.

The third chapter studies on the correlation between a concentration and a density of aqueous solution of sodium chloride. The correlation proposes a convenient method for determination of saturated concentration of an aqueous solution of sodium chloride.

In the fourth and fifth chapters, crystal grow th of sodium chloride are studied by observation of stationary lluidized seed in supersaturated solution.

On tests of fluidized seed, suspended crystals are considered not to be affected one another by the reason of a few suspended crystals. Crystal growth mechanism is discussed on the two steps of diffusion and surface reaction and crystal grow th rate is proposed to be estimated from the rate of both different steps. In the six chapter, nucleation and crystal grow th rates of sodium chloride are experimentally studied in three well stirred vessels of different size in which an agitator of different material is used. In this study, a few crystals are suspended on which suspended seed are supposed not to affect nucleation contacted by one another.

In the seventh chapter, a semi-batch crystallizer which seed crystal is suspended on batchwise in and supersaturated solution with a constant concentration is continuously passed through, is sel up and secondary nucleation rate by and crystal grow th rate of suspended sodium chloride crystals are observed under high density of suspended crystal almost same to those in industrial crystallizers. These rates are much different from those obtained by a few suspended seed. They are supposed to be come from effect of high suspension density, and almost same to those in industrial crystallization.

In the eighth chapter, continuous crystallizers for sodium chloride are operated, and crystallization rate and crystal size distribution are observed on steady state operations. From these data, operating points shown by productivity and crystal size are plotted in a design chart and are compared with those from industrial crystallizers. From these discussions, crystal size and productivities of industrial plants might be concluded to be estimated from laboratory data. And new development methods for design of continuous crystallizers and their operating conditions were proposed in the ninth chapter.

The research project's results are summarized to be applied for development of general continuous crystallization technique not only for crystallization of sodium chloride in the tenth chapter.

1 緒言

塩化ナトリウム結晶の生産法は製塩工業の最終工程の重要な操作として，長い年月を掛けて開発されてきている。しかし，塩化ナトリウム水溶液からの塩化ナトリウム結晶の生成は，結晶核の発生とその成長とからなり，結晶化現象そのものが複雑で，今なお日進月歩の過程のうえにある。結晶そのものの特性，結晶の生成，生産技術に関する研究組織 は近年世界規模で整備され，国際シンポジウムが定期的に開催されるようになっている。特に結晶の生産技術に直接関与する工業晶析に関する研究組織が1970年初にヨーロッ パでスタートし，1972年以降3年毎に定期的に国際シンポジウムが開催されるように なっている。これらのシンボジウムを通して工業装置内の結晶化現象は明らかになり，そ のうえで装置•操作の設計理論が提出されている。本プロジェクト研究においては，工業晶析装置内における晶析現象と晶析装置•操作に関する最新の研究成果を塩化ナトリウム系に適用し，塩化ナトリウムの工業晶析現象を解明すると同時に晶析装置•操作の設計に関する新しい提案を行うものである。本研究報告書では＂工業晶析現象と装置•操作設計＂ の現状について整理を行い，以降本研究で行われた＂塩化ナトリウム結晶核の発生•成長現象＂および＂装置•操作設計＂のための実験室規模の研究成果を整理し，最後に＂晶析理論に基づく晶析装置•操作の設計•開発法＂について報告する。

2 工業晶析現象と晶析装置•操作の設計

$2 \cdot 1$ 工業晶析現象

工業装置内で起こっている結晶化現象（いわゆる晶析現象）は，結晶核の発生とその成長が主であるとして研究されてきた。これらの両現象はFig．2－1に示すごとく，分子また

Fig．2－1 The ideal model of nucleation and growth
はイオンの衝突に基づくモデルが考えられ，このモデルより組み立てられたモデル理論を中心に検討されていた。しかし，晶折操作が工業プロセスで広く採用されるにつれ，この モデル理論のみで工業装置内の現象を理解することはできない。それらを模式的に示すと，装置内で発生した結晶核でそのまま成長して製品になるのは（Fig。2－1に示される理想モ デルに相当する現象），Fig。2－2の破線で記されているように装置内で発生した核の一部 で，操作条件によっては図中の実線で示される現象が支配的になることが多い。理学的理論をベースに発展した初期の晶析理論は破線の現象を主に組み立てられており，そこで提出された式がそのまま装置内現象の定量化に用いられていた。しかし，実線で示された二次核化，装置内で発生した結晶の破砕，過飽和溶液内に側濁している微結晶が成長してい る結晶に付着し，それらが包念されて成辰結思の一部になる筞の現象が起こる場合には，初期に体系化された工業晶析理論では装置内現象を十分表現することはできない。また， この理論で装置•操作の最適設計を行うことは困難である。これらに関する研究は最近—部で行われ，その成果も得られるようになっでいるが，まだ十分な工学理論を提出するに は至っていない。現状では装置内現象を装置形式や操作条件等によって分類し，それらの分類されたものに対して適用できる設計理論，手法の提出が試みられ実用に供されている。晶析操作で得られる製品は，Fig．2－2に示される単結晶，単一結晶，凝集晶およびこれら の結晶相が析出した残りの液相などであり，操作の目的により結晶相であったり液相で

Fig．2－2 The model of crystallization phenomena in the industrial crystallizers
あったり，またその両者であったりする。ブロセスによっては析出した結晶を再び融解 し，製品を液相とする場合もあり，晶析操作が広く産業界で用いられるようになってその対象も多岐にわたるようになっている。ここではまず過飽和溶液，核化，成長について理学的な基礎概念から扱う。
$2 \cdot 1$ •a 溶液および過飽和溶液の状態
溶液の状態は，Fig．2－3に示すように溶解度•過溶解度を基準にして3つの状態に分け て考える。すなわち，溶液濃度が溶解度より低い未飽和域とそれより高い過

温度
Fig．2－3 The state of solution
飽和域，さらにこの過飽和域は核発生を起こす不安定域と核発生の起こらない準安定域に分けられる。

これらの状態は，溶液内に存在する析出成分の状態と併わせて次のように考えられる。例えば安定域でも溶解度より大幅に低い方に離れている濃度の状態Aでは，これらの溶質分子は単分子状に解離している。しかし，その濃度が高くなるにつれて（状態B）これら の分子の一部は会合するようになり，溶液中に会合したものが存在してくる。この会合の状態は同じ濃度に対して必ずしも一一定せず，その状態に希薄状態からすばやく到達したも

のか，ゆっくり到達したものかなど，溶液の履歴その他の多くの因子の影響を受ける。さ らに濃度の高いC，Dの状態では，会合分子の濃度や大きさは変化する。このように析出成分が会合していくのは，＂分子相互の衝突の可能性こ＝衝突の確率＂に基づいて考えると理解しやすい。すなわち，その溶液の濃度によって決まる消隇も成長もしない大きさの結晶核が存在し，その大きさ以下の粒子は消滅する傾向を示すが，その消減する以前に他の分子の衝突があるとその結果として粒径が増大することがある。この状態をFig．2－4に示す。

Fig．2－4 Modeling of the behavior of solute during the course of primary nucleation

以上のように考えると，Fig．2－3の状態図でBとCとの間の区別は未飽和か過飽和かと いうことであるから一見明らかなようであるが，実際には粒径の影響を受け不明膫である。 このことは過飽和溶液物性値（粘度，密度，拡散係数）をみても明らかなように，その境界を示す溶解度（飽和濃度）の状態では何ら特別な変化を示さないことが多い。

溶液中に結晶が存在するとその大きさによってその結晶の溶解度を異にする。粒子径と溶解度との関係については，溶液の状態に対応して，それぞれ関係式が提出されており， それらをTable 2－1，2，3に示す。

工学的立場でこれらの関係を考えたとき，結晶粒径がその粒子の溶解度に対してどのよ うな関係があるかを明らかにする必要がある。一般に粒径が溶解度に寄与する現象は，オ ストワルド・ライブニングとして知られている。その様子はFig．2－5に模式的に示す。

過飽和溶液内の微結晶中に大結晶があると周囲の微結晶は溶解しつつ消減し，中央部の大結晶はますます成長する。この現象を利用すると，微結晶除去操作法に対するアイデア が生まれてくる。また，晶析装置内の操作との関連においては結晶核より成長するときの現象解明にも役立つ。

以上は特定粒径の結晶の溶解度について述べたが，Fig，2－3に示した溶解度は粒径の影響を受けない値である。Table 2－1の関係式より明らかなように，結晶粒径が溶解度に大 きく寄与するのは粒径の小さい範囲であり，粒径が大きくなると粒径は溶解度に関係しな

Table 2－1 Correlation between particle size and solubility

17vestigator	Correlative equation	State of Solution！（nodel）
Ostwelen！ treullich	$\ln \frac{C_{r}}{C^{*}}=\frac{2 M \sigma}{R T \rho r}$	Non－Electrolyte solution
Dundon！ Mack	$\ln \frac{C_{r}}{C^{*}}=\frac{2 M \sigma}{R T \rho r}(1-\alpha+n \alpha)$	Electrolyte solution
Mrapor	$\begin{gathered} C_{r}=C^{*} \exp \left(\frac{a}{r}-\frac{b}{r^{4}}\right) \\ a=28 M / R T \rho \\ b=Q^{2} M / 8 \pi K R T \rho \end{gathered}$	Electrolytically charged spherical particle

C＊：Solubility of large crystals
C_{r} ：Solubility of spherical particle with radius r
K ：Inductivity of solid
M ：Molecular weight
Q ：Electric charge of particles

R：Gas constant

T：Absolute temperature
ρ ：Density
σ ：Surface energy

（i）スタート時
－ほぼ均一に微結晶発生

（ii）経過後 1
－1個の結晶の成長開始

（iii）経過後 2

- 結晶粒径増大
- 周囲の微結晶溶解
- 大結晶と微結晶の間に無結晶域生成

Fig．2－5 Ostwald ripening
くなる。理論的には無限大の粒径を有する結晶の飽和濃度が溶解度であり，特別な場合を除くと，製品結晶粒径は十分な大きさが要求され，そのような製品粒径に対してはFig． 2－3の溶解度をもってその粒子の飽和濃度として考えることができる。

溶解度より濃度の高い範囲の過飽和域の状態でも，新しい結晶粒子を発生することなく留まることができるが，この範囲を越えてさらに大きな過飽和になると溶液内に結晶が自

然に発生するようになる。
この溶液内に単一結晶を設置した実験は次のようになる。その様子をFig．2－6に示す。

Fig．2－6 The change of solution concentration in the cooling operation
すなわち飽和濃度付近の未飽和域に結晶を吊し，温度を徐々に低下させると，図中の操作線のように温度が下がるに従い結晶は溶解して溶液濃度は增大するが，その増加速度は次第に幄くなり操作線が溶解度曲線と交わる飽和濃度（a点）において変化は止まる。さ らに徐冷し続けるとその溶液濃度変化は，操作線1に従って低下しその線は溶解度曲線に かなり近い過飽和域を溶解度曲線の上側に沿って変化し，溶液内の単一結晶は成長する。 しかし，a点における溶液（飽和溶液）を急冷すると，結晶成長による濃度低下よりも温度降下による過飽和度の増大の方が大きく，b点に到達して多数の微結晶が発生し急に温度が上昇する。この晶析が起こると，溶液濃度は急激に低下し，そのあと操作線は図中の 2のようにやはり溶解度曲線ABに近づく。ここで発生した微結晶は，数が多く徐々に成長 するが大きな結晶とはならず，またあらかじめ吊した単一結晶もあまり成長しない。この ようにして観察されるb点の軌跡CDが過溶解度曲線となる。これよりも濃い状態は不安定域といわれ，急激な核発生が起こるので，その䇩囲に到着した溶液の過飽和濃度は急激に低下する。操作線1と2の間の冷却速度で操作すると，操作線3のようになり，結晶は成長 するが新しい微結晶の発生は起こらず，溶液内の単一結晶を十分大きくすることができる。言い㪱えると，過溶解度曲線CDと溶解度曲線ABとの間が準安定域で，そこで操作すると新たな結晶の発生はなく，存在する結晶のみが成長して大きな結晶が得られることになる。

しかし，このような過溶解度は装置内に愳濁する結晶，溶液の泠却速度，装置内撹抄翼回転などの機械的エネルギーなどの操作因子の影響を受ける。また，瞬間反応によって急速に反応物を生成させ，それによってある過飽和度状態として一定温度に保ち静置すると，

結晶核が発生するまでにある待ち時間が必要である。この待ち時間は過飽和度の影響を受 ける。このことは逆に待ち時間によって核が発生する過溶解度の大きさが異なることにも なる。
$2 \cdot 1 \cdot \mathrm{~b}$ 核化現象
$2 \cdot 1 \cdot b \cdot i$ ）核化現象の分類
核化現象の分類は，Table 2－2に示されるが，表中の三次元，二次元は，それぞれ

Table 2－2 Classification of ncleation phenomena

次の現象である。
三次元核化現象•••液相内における核化現象
二次元核化現象•••固体表面上における核化現象
一次核化現象は $2 \cdot 1 \cdot a$ で扱ったように溶液内の溶質の衝実によって溶質粒子の会合したも のが生成し，会合物の中の成長も消滅もしない大きさの結晶のことを＂結晶核＂といい， それよりも小さいものを＂胚種＂という。Fig．2－7は同種の結晶の存在しない溶液からの核化現象を示したもので㗏種を経過して核となる。この過程における変化の方向は，後に熱力学的に検討するが，一般に胚種は消滅の傾向を示す。しかし，消滅する以前に溶質分子が衝突すると見かけ上粒径は増大したことになり，この増大が核の大きさ以上になるま で続いたとき，核化現象といわれる。その衝突頻度は溶液内に存在する溶質分子の濃度に関係する。そのことより溶解度の大きい系では衝宊頻度は大きく肧種の大きいものが生成 しやすいこととなる。
溶液内に不純物が存在すると，その不純物と溶質分子とより核発生が起こる。不純物の作用も複雜で，簡単に述べることはできないが，それらには，

- 核生成に必要な活性化エネルギーを減少させるもの
- 溶液粘度を増大させ，溶質分子の昿散を抑制するものや胚種に付着してその成長

を妨害するものなどがあり，核化を促進するものと抑制するものとがある。

－：品物颀

Fig．2－7 Homogeneous and heterogeneous nucleation

不純物の作用においても，液相中に溶存して作用するものと，液相中に固相として存在 し作用するものとがある。これらはいずれも不均一核化現象と考えられる。
溶液内に結晶が存在すると，その結晶を基に核化現象の起こることが多い。この核化現象が二次核化現象である。

二次元核化現象は固体表面での核化現象で，その様子はFig．2－8のごとくである。

Fig．2－8 The phenomena of two－dimensional nucleation
Fig．2－7と比較すれば容易にわかるように機構そのものは同一視することもできるが，表面上の核化現象はその表面における結晶成長の基になるものである。したがって，結晶 の成長現象やスケーリングの基䂣現象の一つとなる。

一定の過飽和状態に保たれた回分装置内の核化現象と溶液濃度変化は，Fig．2－9に示す ごとくとなる。溶液が所定の過飽和度になってから核発生が認められるまでの時間が待ち時間（または誘導時間）で，濃度低下が認められるまでの封間は潜伏時間である。

待ち時間については，Fig．2－7の肧種が核になるまでに要する時間と考えることができ る。その待ち時間は，過飽和度，擋拌条件，共存不純物の影響を受ける。久保田ら＂は， この現象に対して一連の研究を行っており，同一サンプルを数多くつくり，同一条件下で核が発生するサンプル数と待ち㭙間との間の関係を実測することによって，核化確率を求 めている。

Fig．2－9 The nucleation phenomena and the change of solution concentration in the batch crystallizer
均相系からの核発生現象の熱力学的検討は，気相から球形の液相が生成するときの自由 エネルギーの変化として扱われている。

いま，均相系内に半径r の液相が生成したとする。この液相表面の界面エネルギーを σ ，気相および液相の単位体積当りのケミカルボテンシャルをそれぞれ μ_{g} ，μ_{1} とおくと，

気相の持っている自由エネルギーは，$\frac{4}{3} \pi r^{3} \mu_{\mathrm{g}}$
液相の生成で，液相が占めている部分の自由エネルギーは，
液相界面エネルギー $4 \pi r^{2} \sigma$
$\frac{4}{3} \pi r^{3} \mu_{1}$
液相の持っている自由エネルギー

の和として表されるので，

$$
4 \pi r^{2}\left(\sigma+\frac{\mathrm{r} \mathrm{\mu l}}{3}\right)
$$

となる。
したがって，液相の生成による自由エネルギーの変化 ΔG は，不均相系の自由エネルギ一から均相系の自由エネルギーを引いたものであるから，

$$
\begin{align*}
\Delta G & =4 \pi r^{2}\left(\sigma+\frac{+\mu_{1}}{3}\right) \frac{4}{3} \pi r^{3} \mu_{\mathrm{g}} \tag{2-1}\\
& =4 \pi r^{2} \sigma+\frac{4}{3} \pi r^{3}\left(\mu_{1}-\mu_{\mathrm{g}}\right) \tag{2-2}
\end{align*}
$$

となる。そこで r に対する $\Delta \mathrm{G}$ の変化をみると，

$$
\begin{equation*}
\frac{\partial \Delta \mathrm{G}}{\partial \mathrm{r}}=4 \pi \mathrm{r}\left\{2 \sigma+\mathrm{r}\left(\mu_{\mathrm{r}}-\mu_{\mathrm{g}}\right)\right\} \tag{2-3}
\end{equation*}
$$

となる。
（i）$\partial \Delta \mathrm{G} / \partial \mathrm{r}>0$ ，すなわ $5 \mathrm{r}<2 \sigma /\left(\mu_{\mathrm{g}}-\mu_{\mathrm{l}}\right)$ では r の増大につれて $\Delta \mathrm{G}$ は增大し，その粒子径 は減少する。このことは言い換えると，胚種は消隇する傾向のあることを示す。
（ii）$\partial \Delta \mathrm{G} / \partial \mathrm{r}=0$ ，すなわ $5 \mathrm{r}=2 \sigma /\left(\mu_{\mathrm{g}}-\mu_{\mathrm{l}}\right)$ では，この粒子径は変化しない。このこときの粒径 r を特に r_{c} と表示し，臨界粒径すなわち核の大きさとなる。
（iii）$\partial \Delta \mathrm{G} / \partial \mathrm{r}<0$ ，すなわち $\mathrm{r}>2 \sigma /\left(\mu_{\mathrm{g}}-\mu_{\mathrm{l}}\right)$ では，この粒子径は増大する。このことより，核より大きい粒子径の結晶は成長する。

ケミカルポテンシャル μ_{g} や μ_{1} は，それぞれ次式で表される。

$$
\begin{align*}
& \mu_{\mathrm{g}}=\left(\mathrm{RT} / \mathrm{V}^{*}\right) \ln \mathrm{P} \tag{2-4}\\
& \mu_{\mathrm{l}}=\left(\mathrm{RT} / \mathrm{V}^{*}\right) \ln \mathrm{P}^{*} \tag{2-5}
\end{align*}
$$

P ；気体の圧力
P^{*} ；その温度の飽和蒸気圧
R ；気体定数
T ；絶対温度
V^{*} ；分子容
したがって，臨界粒径r c はEq．2－3より，

$$
\begin{equation*}
\mathrm{r}_{\mathrm{c}}=2 \sigma /\left(\mu_{\mathrm{g}}-\mu_{\mathrm{l}}\right)=2 \sigma \mathrm{~V}^{*} / \mathrm{RT} \ln \left(\mathrm{P} / \mathbb{P}^{*}\right) \tag{2-6}
\end{equation*}
$$

となる。 $\mathrm{P} / \mathrm{P}^{*}$ は無次元過飽和度 α で表すと，

$$
\begin{equation*}
\mathrm{r}_{\mathrm{c}}=2 \sigma \mathrm{~V}^{*} / \mathrm{RT} \ln \alpha \tag{2-7}
\end{equation*}
$$

となる。また，核を生成するに必要なエネルギーは，Eq．2－8のr をrcで置き換えればよ く，

$$
\begin{equation*}
\Delta \mathrm{G}_{\left(r=r_{c}\right)}=4 \pi r_{\mathrm{c}}^{2} \sigma / 3=16 \sigma^{3} \pi \mathrm{~V}^{* 2} / 3 \mathrm{R}^{2} \mathrm{~T}^{2}(\ln \alpha)^{2} \tag{2-8}
\end{equation*}
$$

となる。
これより核発生速度 F^{\prime} は，次式でも表せる。

$$
\begin{align*}
& \mathrm{F} \cdot \propto \exp \left(-\Delta \mathrm{G}_{\left(=E_{c}\right)} / \mathrm{kT}\right) \tag{2-9}\\
& \mathrm{k} ; \text { ボルッマン定数 }
\end{align*}
$$

これらの関係式より三次元核化が検討される。すなわち，
（1）過飽和度 α が大きいと，Eq．2－7よりrcは小さくなり，またEq．2－8より核発生のための エネルギーは小さくなる。すなわち，核発生は起こりやすい。
（口）溶解度の小さい塩類の系では，中井の方法で算出した。は $38 \sim 106 \mathrm{erg} / \mathrm{cm}^{2}$ ，易溶性笽類では $5 \sim 24 \mathrm{erg} / \mathrm{cm}^{2}$ sであり，これをEq．2－7，Eq．2－8，Eq．2－9と比較すると難溶性の系では核発生しにくいこと，言い換えると α が大きくならないと核発生が起こりにくくな る。しかし，核化現象は溶液内の粘度その他，溶質分子の移動に寄与する因子の影響を考 えなければならず，これだけですべてを論じることはできない。

溶液内に不純物が存在するときの核生成に必要な自由エネルギーについては，不純物の種々のモデルに対して関係式が提出されている6．7．s．9。

$2 \cdot 1 \cdot b \cdot i i)$ 核発生速度と装置内の核化現象

核発生速度についてはアレニウスタイプの核発生速度式が用いられており，前述のEq． 2－8を用いたEq．2－9が均一核化現象に対して用いられている。緤晶剤や第三物質上への核化現象を考えると，核を形成するために必要なエネルギーはそれぞれのモデルに対して提出されており，これをEq．2－9の Δ Gの中に入れることが考えられている。

一方，二次核発生速度については種々の研究がされており，一次核発生速度とは全く異 なる機構が提出されている。二次核化現象および核化速度に影響を与える因子はTable。 2－3のごとくであり，以下にそれらの概要を扱う。

Table 2－3 Secondary nucleation and the factors affecting the secondary nucleation rate
（1）種晶について・•••••
（2）粘性力の影響。
（3）ミクロアトリッションの影響•••
衝突頻度の影響。
（4）マクロアトリッションの影響•••
（5）装置内核化•••••••
（6）その他•••••••••••••••
$\left\{\begin{array}{l}\text { 核化のための最小粒径 } \\ \text { 粒径の核化速度に対する影響 }\end{array}\right.$
$\left\{\begin{array}{l}\text { 核化速度に対する過飽和度の影響 } \\ \text { 流動の影響 }\end{array}\right.$
$\left\{\begin{array}{l}\text { 核化速度に対する過飽和度 } \\ \text { 種晶粒径の影響 }\end{array}\right.$
$\left\{\begin{array}{l}\text { 結晶の表面状態に関与 } \\ \text { 衝宊エネル＂－} \\ \text { 撹拌翼材質の影響 }\end{array}\right.$
$\left\{\begin{array}{l}\text { 結晶の形状と大きさ } \\ \text { 衝突エネルキ－}\end{array}\right.$
$\left\{\begin{array}{l}\text { 待ち時間 } \\ \text { 衝突エネルキ＂の分布 } \\ \text { 種晶粒径の分布 } \\ \text { 種晶量の影響 } \\ \text { 核化と待ち時間 } \\ \text { 種晶の表面エネルギ } \\ \text { 溶液粘度 }\end{array}\right.$
\｛真の核化と有効核化臨界粒径と核の成長 オストワルドライブニング イニシャルブリーデ1ング
焙旺表面状態

（1）種晶について

種晶として結晶が作用するためには，ある粒径以上の大きさが必要であるが，この核化 のための最小粒径を種晶最小粒径という。この種晶最小粒径についての報告もいくつかな されているが，一般には数10ミクロンないし数100ミクロンの筷䧋と考えられる。粒径の小さい種晶は衝突エネルギーは小さく，二次核発生速度に対する粘性力の影響が大きい。種晶が成長して大きくなると，ミクロアトリションの寄与が大きくなる傾向がある。
（2）粘性力による影響
結晶表面を沿って流れる溶液の粘性力によって核発生が起こる。この場合は核化速度は流動の影響を受けRe数によって相関される。また相関式の過飽和度の指数 n_{N} は，アトリ ションによる核化の相関式よりも大きくなる傾向がある。
（3）ミクロアトリションの影響
ミクロアトリションによる核化速度に対する過飽和度の影響は，結晶成長速度に対する それと同じになる傾向が認められるが，それは核化速度が結晶表面の成長による再生の影響を受けるためである。しかし，系によっては同じ衝突による核化現象でも，核化速度と相関される過飽和度の指数が，成長速度に対するそれより大きくなることもある。また同 じ衝突でも過飽和度の大きい溶液内では，大きな粒径の結晶が発生するという報告もあり， これは有効核の検討に影響する ${ }^{10}$ 。
種晶粒径によって衝突の影響が異なる。大きい粒径の結晶は慣性力が大きく，ミクロア トリションの核化速度に対する寄与は大きくなるが，粒径が小さくなると慣性力の寄与は小さくなる傾向を示す。
衝突による核発生は，結晶の表面状態に影響する。衝突結晶の表面状態は結晶成長によ って修復されるが，その修復速度と破損頻度との関係も核化速度に影響する。また衝突エ ネルギー ${ }^{11}$ が小さいと核化の起こらないこともあり，衝突するものの材質によっても影響 を受ける ${ }^{12)}$ 。
（4）マクロアトリションの影響
マクロアトリションについての研究報告は少なく，定量的な関係は明かでない。通常の形状•大きさの結晶では，この現象を無視し得るような操作条件を選定することができる が，針状晶などの特殊形状の結晶ではこの現象を無視することはできない。
（5）核化に関するその他の現象
核化現象は，溶質分子が衝实して臨界粒径以上になって核が現れる現象であるが，この現象が起こるためには待ち時間が必要である。したがって，その意味では待ち時間は二次核化現象でも考えられる。しかし，通常テストでは二次核化に対する待ち時間は無視され るように発生が起こる。

種晶表面の界面エネルギーは，粘性力の寄与とミクロアトリションの寄与の程度を示す目安になる。界面エネルギーの大きい硫酸銅系では，流動層種晶による二次核化現象はミ クロアトリションが支配的である。中間のカリ明學では，流動層種晶による二次核化現象 は粘性力が支配的に作用するが，それに撹抖を加えると核化速度は大幅に增大し，ミクロ アトリションが支配的となる。界而エネルギーの小さい硫酸マグネシウム系でも，流動種晶による核化現象は粘性力の影響を受ける。物性値としては，粘度の影響も受け，粘度の高い系では，核化速度は小さくなる傾向を，また界面エネルギーの大きい系でも核化速度

は小さくなる傾向を示す。しかし，現状ではその絶対値の比較を行うほどには十分なデー夕が得られていない。

溶液内に発生した核は，そのまま製品結晶とはならない。最近の実測データによると，発生した核は多いが製品となるものは少なく，過飽和溶液内に懸濁する結晶の成長に寄与 すると考えられることが多い。ここで発生した結晶のことを真の核，製品となる結晶の核 になったと考えられるものを有効核という。工学的には有効核化が重要である。

溶液内の過飽和度が小さくなると，Eq．2－6で示されるrcが大きくなるため，発生した微小結晶粒径がこのrcより小さくなり，そのために微小結晶は消減する。この現象はオス トワルドライプニングといわれている。真の核と有効核との間を結びつける一つの現象と なることがある。

結晶表面のミクロ的状態は核化現象に寄与する。また，衝实頻度は結晶表面状態に影響 し，その結果として核化速度に影響する。

二次核発生速度 f，［number／hr•m $\left.{ }^{2}\left(\mathrm{~mol} / \mathrm{H}_{2} \mathrm{O}\right)\right]$ については一部の系で相関式が提出さ れている ${ }^{13 \sim 16)}$ 。それらは以下の通りである。
$\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ 水溶液よりのカリ明蹃の核化速度
種晶が固定層の場合

$$
\begin{align*}
\mathrm{f}^{\prime} & =0.8 .5(\Delta \mathrm{C})^{3.3}(\mathrm{Re})^{2.5} \tag{2-10}\\
\mathrm{f}^{\prime} & =10(\Delta \mathrm{C})^{3.3}(\mathrm{Re})^{2.5} \tag{2-11}\\
\mathrm{f}^{\prime} & =6 \times 10^{-4}(\Delta \mathrm{C})^{3.3}(\mathrm{nr})^{3} \tag{2-12}
\end{align*}
$$

種晶が流動層の場合
（ nr ：撹拌翼の回転数［r．p．m］）
撹拌槽内

$$
\begin{equation*}
\mathrm{f}^{\prime}=\mathrm{K}(\Delta \mathrm{C})^{\mathrm{p}^{3} \mathrm{a}^{4}(\sin \varphi)^{2}} \tag{2-13}
\end{equation*}
$$

（ d ：撹汼翼径，φ ：撹拌翼の傾斜角， k •pは操作条件の影響を受ける）
$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ 水溶液よりのCuSO $4 \cdot 5 \mathrm{H}_{2} \mathrm{O}$ の核化速度

$$
\begin{equation*}
f^{\prime}=1.2 \times 10^{6}(\Delta C)^{1.6}(R e)^{4.0} \tag{2-14}
\end{equation*}
$$

$\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ 水溶液よりの $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ の核化速度

$$
\begin{equation*}
f^{\prime}=3.6 \times 10^{1.5}(\Delta \mathrm{C})^{3.8}(\mathrm{Re})^{4.8} \tag{2-15}
\end{equation*}
$$

$2 \cdot 1 \cdot \mathrm{~b} \cdot \mathrm{iii}$ ）装置内の核発生速度
工業晶析操作においては，通常装置内に多結晶を愳濁させて操作する。その場合二次核化現象が支配的になることが多い。しかし，一次核化現象と二次核化現象の両方より核が発生することがあり，それぞれを厳密に区別することは容易ではないが，晶析操作中には一次核化によるのではないかと推察される現象もときどき見受けられる。ここでは工業操作を行う上で注意すべき一次核化現象について検討する。
i）静置された過飽和溶液においては，一次核の発生は少なく，大きな過飽和状態（系に もよるが $10^{\circ} \mathrm{C}$ 以上の温度過飽和度を必要とするものが多い）で，長い待ち時間（過飽和度にもよるが，数時間以上はそのまま核発生のないこともしばしばある。）を経過したと

ころでみられることが多い。
ii）撹抖系などにおいては，小さな過飽和状態においても一次核発生が起こることが多い。 しかし，ここで発生する核の数は少ない。その溶液内に種晶が存在すると，種晶による二次核が発生するが，そこで発生する二次核の数に比較してもはるかに少ない。このような状態では，一次核化と二次核化は独立に起こると考えられる。
iii）大きな過飽和状態においては非常に大きな核発生速度となる。このような核発生は起こらないように注意すべきである。
－難溶性の場合•••反応晶析で得られやすいが，このような場合には急激な核発生となり やすい。
－高粘度の場合•••核発生に対する待ち時間はかなり大きいが，ひとたび核が発生すると急激な核発生となる。

工業操作では僅かな核の発生は問題にならないので，急激な核の発生について注意しな ければならない。過剩核の発生は微小結晶しか得られないとか，凝集晶やスケーリングの生成となりやすい。

このように問題となる一次核化現象に対する対策としては，以下のことが考えられる。

- 小さな過飽和状態で操作すること。
- 局所的に大きな過飽和状態になっても，核が発生する以前の待ち時間内に過飽和状態 を小さくするか，加熱操作などを利用して，溶液を未飽和域にもっていくことによって，会合分子を分散させ，核が発生しにくい操作をすること。
一方，装置内の二次核化現象も複雑で，まだ十分解明されていない。ここでは分級層型装置，混合槽型装置に分けて検討する。
（1）分級層型装置内における二次核化現象
二次核化現象を考える場合，次の点に注意しなければならない。
a）二次核化現象と待ち時間……待ち時間の有無は装置内の核化現象の検討に次の ように影響する。すなわち，待ち時間の範园内では核化が起こらないので，その間に混合 などによって過飽和度を低下させると，その低下した状態のところの核化速度が装置内の核化速度となる。しかし，待方時間が短いと，局所的に過飽和度の大きいところでの核化現象が支配的になる。二次核化現象では待ち時間はほとんど無視し得るので，局所的な核化現象を考えなければならない。
b）局所的核化現象•••••核化現象は，種晶，過飽和度，流動状態などの影響を受け る。それらの装置内での分布を調べそれに対応した二次核化速度を検討する。

ここで注意しなければならないのは，核として発生したものと有効核との関係である。 この間に大きな差があるのは明らかである。それがどのように変わっていくのかは明かで ない。発生した核が有効核になるとき影響する因子は，溶液の過飽和度，懸濁結晶量，核

の大きさなどがあり，そのおのおのに着目して倹討しなければならない。分級層型装置内の二次核発生速度はFig．2－10に示すように，装置内をいくつかの部分 に分割して，そのおのおのにおける核化現象を考える。

Fig．2－10 The schematic diagram of the classified bed type crystallizer
－蒸発室では過飽和度は大きくなるが，種唱が小さいと核発生はあまり大きくならない。 しかし，過飽和度が大きくなり過ぎると一次核化が発生するようになるので，過飽和度が大きくなり過ぎないように蒸発速度の制御をすることが必要である。
－晶析装置内の核発生については，装置入口の過飽和度を設定し，その条件で操作すると高さ方向の過飽和度，結晶粒径，側濁密度の分布は推算され，その局所値に対応した二次核化速度は算出されるので，その総括として装置内核発生速度を決定することができる。 この推算をすると，装置内の過飽和度の大きいところに大粒径の結晶が贔濁しているため， そこでの核化速度が支配的となる。流動層種晶による核発生においては，結晶種のみによ る核化現象が支配的になるので，装置内のミクロ的現象よりマクロ的現象の方の寄与が大 きく，それを考えることによって核発生速度を裴置の大きさに関係なく検討することがで きる。分級層型装置内核発生速度については，約 $100 \mathrm{~cm}^{3}$ の種晶層によるデータを基に実装置内のそれを推算し，かなりよい一致が得られている「7。
－外部循環系内における核化児象においては，循睘のためのポンプ内部でアトリッション による核発生が多い。また供給原料漫度によっては供給䑺所で局所的に大過飽和になると ころがあり，そこに大きな種晶が循擐されると異常に大きな核発生となることがある。

（2）混合型装置内における二次核発生

二次核発生についての考え方は，分級層型と同じであるが，装置内の分布の状態が異な ってくる。それをFig．2－11に示す。

Fig．2－11 The distribution model of the state in a crystallizer for the discussion on secondary nucleation
混合型では結晶はほほ均一に分散されていると想定する。
－蒸発面における核発生速度（図中 1 ）••••••蒸発速度が大きく，そこで局所的に過飽和度が大きいと急激な核発生となる。そのために溶液の循擐速度を速くすることは大切で ある。気相と種晶が過飽和溶液内にあるときの核発生速度についての報告はない。
－擋拌翼回転部分（図中 2 ）•••••核発生速度は他の部分に比較して 10^{2} 倍ぐらい大きい とみられる。この部分での大粒径による二次核化速度が支配的となる。
－撹扫翼近傍付近（図中3）……翼回転部分と翼から離れた部分の中間的挙動を示し ており，この核化速度は急激に減少するので，あまり問題にはならない。
－擋拌翼から十分離れた部分（図中4）••••••・の部分の核発生速度は流動層種晶の場合に近いと考えられている。しかし，装置内では最も広い部分を占めているので，装置内全体の核発生に占める割合としては慎重に考える必要がある。
－原料供給部付近（図中 5 ）••••••哯抖槽型装置では原料中に結晶が存在しなくても，懸濁結晶は循環しているので，供給部付近でも核発生が起こることがある。それは供給条件によって局所値としての過飽和度が大きくなるためである。
混合装置内の核発生としては，これらの各䑺所での核速度の総和が考えられるが，また その一方では発生核が成長に寄与するなどによって，すべての発生した核は実質的な有効核になっていない。発生した核の中には成長せず過飽和溶液内に留まるものもある。その ように考えると，現状では装置内の核発生速度を推算することはほとんど不可能である。 したがって，核の制御には，個々の装置について核発生速度を実測し，核発生の主要部分 は装置内のどこで起こっているのかを考え，その各箇所の局部的条件から，核発生に支配的に関与する因子を判断する必要がある。

工業装置内の核発生においては，比較的小さい操作過飽和度で核となる結晶は大きく， $1 \mu \mathrm{~m}$ 単位ぐらいの場合もある。また大型装置では核発生速度は小さくなる傾向を示すこ とが多い。

工業操作では装置内の核発生を希望の狭い範囲に保つように装置•操作を設計すること は困難である。スケールアッブにおいては，溶液内の最大過飽和になる箇所の結晶の䫁濁状態，流動状態を等しくなるように注意するか，また撹抄翼の衝突部分でのミクロアトリ ションがほぼ等しくなるような操作条件を選定して，小型装置内の核発生速度と大型装置内のそれとが大幅に相違しないようにする。その後で微結晶除去操作を併用して，希望核数に制御するのが有効である。
$2 \cdot 1 \cdot c$ 結晶成長現象

$2 \cdot 1 \cdot c \cdot i) ~$ 結晶成長現象の概要

結晶成長は，溶質分子の溶液本体内から結晶表面への拡散と，結晶表面に拡散した溶質分子の結晶格子への配列とからなる。その状態についてはFig．2－12に示す。

Fig．2－12 The mechanism of crystal growth

すなわち，溶液本体内の濃度を C_{∞} ，結晶表面に接している溶液の濃度を C_{i} ，飽和濃度を C_{s} とおくと，拡散段階の移動速度 $\mathrm{d}_{\mathrm{W}} / \mathrm{d} \theta$ はEq．2－16また結晶表面での格子配列速度 $\mathrm{dW}_{\mathrm{R}} / \mathrm{d} \theta$（表面段階の晶析速度）はEq．2－17となる。

$$
\begin{gather*}
d W_{D} / d \theta=K_{D} M A\left(C_{x}-C_{i}\right)^{\prime} \tag{2-16}\\
d W_{D} / d \theta=K_{D} M A d W_{R} / d \theta=K_{R} M A\left(C_{i}-C_{s}\right)^{m} \tag{2-17}
\end{gather*}
$$

これらの 2 つの現象は直列に起こっており，総括値として $\mathrm{d} \mathrm{W}_{0} / \mathrm{d} \theta$ は，

$$
\begin{equation*}
\mathrm{dWo} / \mathrm{d} \theta=\mathrm{K}_{\mathrm{o}} \mathrm{MA}\left(\mathrm{C}_{\alpha}-\mathrm{C}_{\mathrm{s}}\right)^{\mathrm{n}} \tag{2-18}
\end{equation*}
$$

で表す。ここで $\mathrm{d} \mathrm{W}_{\mathrm{D}} / \mathrm{d} \theta, \mathrm{dW}_{\mathrm{R}} / \mathrm{d} \theta, \mathrm{dW}_{0} / \mathrm{d} \theta$ において， $\mathrm{dW} 0 / \mathrm{d} \theta$ は結晶そのものの成長速度と なるので，

$$
\begin{equation*}
\mathrm{d} \mathrm{~W}_{\mathrm{R}} / \mathrm{d} \theta=\mathrm{d} \mathrm{~W}_{\mathrm{o}} / \mathrm{d} \theta \tag{2-19}
\end{equation*}
$$

と考えてよい。しかし，Eq．2－17，Eq．2－18を見ればわかるように，この両式では，K K と K_{0} ， C_{i} と C_{∞} のように異なっておりその意味する光のが大幅に違っている。Eq．2－16， Eq．2－17は，それぞれの段階の機構との関連があり，それについては，2• $1 \cdot \mathrm{C} \cdot \mathrm{ii}$ ），iii）で それぞれ扱う。Eq．2－19はどちらかと言えば簡単な整理式で，工学的には広く用いられる が，機構的には複雑である。それについては $(2 \cdot 1 \cdot C \cdot i v)$ で扱う。
$2 \cdot 1 \cdot C \cdot i \mathrm{i})$ 拡散段階の物垍移動
溶液内の溶質分子はFig。2－12に示されるように $C_{\infty}-C_{i}$ の濃度に基づく拡散現象によ って物質移動が起こる。それはEq．2－16にて示されるが，ここでの物質移動係数K ${ }_{D}$ は D／$\delta(D$ は拡散係数，δ は境界層厚み）であるので次式となる。

$$
d W_{D} / d \theta=K_{D} M A\left(C_{x}-C_{i}\right)^{\prime}=\frac{D^{\prime}}{\delta} M A\left(C_{x}-C_{i}\right)^{\prime}
$$

ここで 1 は定数であり，溶質分子の拡散を考えると $1=1$ となるが，解離しているイオン や会合した胚種が成長に寄与すると $I \neq 1$ となる。 Dは溶液内の分子の会合度によって異 なるが18，それは溶液過飽和状態の履歴による。 それに関する式として，物質移動係数K ${ }_{\mathrm{D}}$ に対して，McCabeら19は，

$$
\begin{equation*}
\mathrm{Sh} \propto(\mathrm{Re})^{0.6}(\mathrm{Sc})^{0.3} \tag{2-20}
\end{equation*}
$$

$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ に対して

$$
\begin{equation*}
\mathrm{Sh}=0.29(\mathrm{Re})^{0.6}(\mathrm{Sc})^{0.3} \tag{2-21}
\end{equation*}
$$

$\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ に対して

$$
\begin{equation*}
\mathrm{Sh}=0.48(\mathrm{Re})^{0.6}(\mathrm{Sc})^{0.3} \tag{2-22}
\end{equation*}
$$

を提出している。また食塩，重クロム酸カリに対してはSc＝750，Re＝10～100に対して

$$
\begin{equation*}
\mathrm{Sh}=2+0.95(\mathrm{Re})^{1 / 2}(\mathrm{Sc})^{1 / 8} \tag{2-23}
\end{equation*}
$$

が提出されている。
撹抖槽内の物質移動係数としては，修正レイノルズ数 $R e_{0}\left(=N p^{1 / 3} N^{*} D_{1}{ }^{5 / 3} \mathrm{dp}^{4 / 3} / \mathrm{D}_{\mathrm{t}} \nu, \mathrm{Np}\right.$ ；動力数 $[-], \mathrm{N}^{\circ}$ ；撹抄翼の回転数 $\left[\mathrm{hr} \mathrm{r}^{-1}\right]$ ， D_{1} ；擋抖翼直径 $[m], D_{1} ;$ タンク内径［m］，dp；結晶の相当直径 $[\mathrm{m}], v$ ；動粘度［ $\left.\mathrm{m}^{2} / \mathrm{hr}\right]$ ）に対して

$$
\begin{equation*}
\mathrm{Sh}=0.1\left(\mathrm{Re}_{0}\right)^{3 / 4}(\mathrm{Sc})^{1 / 2} \tag{2-24}
\end{equation*}
$$

また，流動層を含む充填層に関する関係式はRe＝1～400に対して

$$
\begin{equation*}
i_{J}=1.6\left(R_{c}\right)^{-2 / 3} / \varepsilon \tag{2-25}
\end{equation*}
$$

ε ；空間率
が提出されている。
単一結晶の成長速度と結晶周辺の過飽和度の分布については， NaClO_{3} 系に対してFig． 2－13が提出されている22．231。図中（a）は各面の成長速度の時間変化，（b）は結晶表面に沿った過飽和分布，および面の結晶成長速度である。図より明らかなように，結晶の成長速度は時間的に変化し，また結晶の表面に接している溶液の過飽和度には関係なく， （c）に示した結晶周辺の過飽和度の勾配に関係しており，この系では，拡散段階が密接 に関係している。

結晶周辺の溶液流速が増大すると，結晶の成長速度はある一定値に収束する。カリ明礬系のデータをFig．2－14に示す。流速が大きくなると，このように変化するのは，溶液内

Fig．2－13 The concentration of solution at the surface of a NaClO_{3} crystal and the growth rate

Fig．2－14 Growth rate of $\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2} 12 \mathrm{H}_{2} \mathrm{O}$ at $305[\mathrm{~K}]$
\longrightarrow 溶浪の流沙（ $\mathrm{m} / \mathrm{sec}$ ）

の拡散抵抗が小さくなり，結晶表面の晶析速度が律速になるためである。これを利用する と，表面晶析速度を実測することができる。

$2 \cdot 1 \cdot c \cdot i i i)$ 表面晶析現象

結晶表面に拡散してきた析出分子は，結晶表面を拡散し，Fig．2－15に示された結晶表面上のステップやキンクに到着すると，そこで結晶表而に組み込まれ結晶成長

```
1a）結出数面のステッブ．（b）結胃成上の校棪
```


Fig．2－15 The schematic illustration of solute ordering on the crystal surface

となる。したがって，結晶表而上の成長は而に沿ってFig．2－16に示すように移動する。

Fig．2－16 The crystal growth on the crystal surface

この移動する面に不純物が吸着されると成長は阻害され，ストップし，晶癖の変化とな る。

このように結晶表面上の成長が進むと，表面上のステップやキンクが減少することがあ り，これによって結晶表面の成長速度は減少する。この成長速度が減少すると，結晶表面 で二次元核発生が起こり，表面にステップやキンクが生じて，再び成長速度が速くなる。 それはFig．2－13（a）に示すように，結晶の成長速度が時間的に変化する原因と考えられる。 また結晶表面にはらせん転位があり，これがあると結晶表面上のステップは結晶が成長し てもその密度は減少しない。このような場合は，Eq．2－26が提出されている24。

$$
\begin{equation*}
d W_{R} / d \theta \propto(\Delta C)^{2} \tag{2-26}
\end{equation*}
$$

結晶の表面晶析速度を検討すると次のような傾向がある。
（i）表面晶析速度は流動の影響を受けない。
（ii）結晶表面の粗さが影響し，表面の一部溶解，機械的処理によって表面晶析速度は増大する。
（iii）温度の影響を大きく受け，低温では表面晶析速度が支配的であるが高温では拡散段階が支配的となる。
（iv）溶解度の小さい系では表面晶析律速になる傾向がある。
（v）媒晶効果を示す不純物の作用は表面晶析現象に影響することが多い。 またEq．2－26の $(\Delta C)^{2}$ に対して，結晶表面上のステッブやキンク密度が多いと ΔC に比例 することもあり，実際には二次元核発生まで考えたこれらの現象の総合したものとして，表面晶析速度を考えねばならず，Eq．2－17のように C C のm 乗として扱われる。また，こ の K_{R} については化学工学便覧に示されているように，アレニウスの関係が適用され相関 されている。
$2 \cdot 1 \cdot c \cdot i v) ~$ 総括結晶成長速度
総括結晶成長速度はEq．2－18で表され，推進力としては溶液本体内の濃度 C_{∞} と，結晶表面に接している溶液の温度に対応した飽和濃度 C_{s} との差で相関される。結晶の表面温度は，晶析熱によって本体内の温度とは一般には異なるが，晶析が溶質の拡散によって起 こると考えると，熱拡散係数は溶液中の溶質の拡散係数より十分大きいので，通常系では ほぼ等しいとみなすことができるご。すなわち，C ${ }^{\text {s }}$ は溶液本体内の飽和濃度と近似する ことができる。しかし，K O_{O} は複雑で一般的な表示は容易でない。総括結晶成長は，拡散段階と表面晶析段階の直列機構であるが，Eq．2－16，Eq．2－17の $\mathrm{dW}_{\mathrm{D}} / \mathrm{d} \theta$ と $\mathrm{dW} \mathrm{R}_{\mathrm{R}} / \mathrm{d} \theta$ は必ず しも等しくなく，そのために結晶成長速度は時間的に変動する。しかし，工業装置内の晶析現象を考えると，結晶は比較的大きなものに成長することが期待され，この間の成長量 の総和が重要である。このような成長時間で対象となる成長量の平均値と考えると。 $\mathrm{dW}_{\mathrm{D}} / \mathrm{d} \theta$ と $\mathrm{d} W_{\mathrm{R}} / \mathrm{d} \theta$ とは等しいとみなしてよい。さらに1，m，n がすべて1と表される場合は，Eq．2－16，Eq．2－17のCiを消去することによって

$$
\begin{equation*}
\frac{1}{\mathrm{~K}_{0}}=\frac{1}{\mathrm{~K}_{\mathrm{D}}}+\frac{1}{\mathrm{~K}_{\mathrm{R}}} \tag{2-27}
\end{equation*}
$$

が得られる。 K_{O} がEq．2－27で表されると，流動への影響はKDに対してであり，また表面晶析現象への影響はKRのみであるので，結晶の成長速度への影響因子はEq．2－27にて容易に検討することができる。
K_{D} についてEq．2－24を用いると K_{D} は粒径 d_{p} に対しては一定となり，また K_{R} は結晶粒径の影響は受けないので，K K_{D} はEq．2－27より粒径に関して一定となる。Eq．2－24は混合型装置に対する関係式であり，混合型においては過飽和度はほぼ均一であるとみなすこと ができるので，装置内の結晶成長速度は粒径に対して一定となる。すなわち ΔL 法則が適用できるということになる，ΔL L法則とは＂同一装置内に存在する粒径の異なる結晶の対応する面の成長速度は粒径に関係なく一定＂である。この法則は近似則であるが工業操作 では多くの場合に適用できる。

$2 \cdot 2$ 晶析装置設計理論

$2 \cdot 2 \cdot a$ 回分型晶析装置

回分型晶析装置モデルとしては種結晶を所望の過飽和溶液に添加し，核の発生しない準安定域内で操作するものとする。

ここで1回分操作に必要な操作時間 Θ は，
$Q=\left(\right.$ 溶液添加，スラリ一排出等。結晶成長以外に要する時間 θ_{1} ）

$$
\begin{equation*}
\text { +(種晶滞留時間 } \theta_{2} \text {) } \tag{2-28}
\end{equation*}
$$

である。ここでは装置内結晶の最大結晶重量Wtは，

$$
\begin{equation*}
W_{t}=k_{v} \cdot \rho_{i} \cdot N \cdot l_{p}^{3} \tag{2-29}
\end{equation*}
$$

となり，装置内の最大椇濁結晶密度（ $1-\varepsilon_{\mathrm{min}}$ ）より必要となる装置容積 V^{\prime} は，

$$
\begin{equation*}
\mathrm{V}=\frac{\mathrm{W}_{1}}{\rho_{c}\left(1-\varepsilon_{\text {min }}\right)}=\frac{k_{v} \cdot N \cdot I_{p}^{3}}{1-\varepsilon_{\text {min }}^{3}} \tag{2-30}
\end{equation*}
$$

となる，また所望粒径 $1 ~ p$ は平均成長速度 $(\mathrm{d} 1 / \mathrm{d} \theta) \mathrm{av}$ より，

$$
\begin{equation*}
\mathrm{I}_{\mathrm{p}}=(\mathrm{d} / / \mathrm{d} \theta)_{\mathrm{a}} 0 \theta_{2} \tag{2-31}
\end{equation*}
$$

生産速度Pは，

$$
\begin{equation*}
P=\frac{W_{1}}{\theta_{1}+\theta_{2}} \tag{2-32}
\end{equation*}
$$

となる。これより平均結晶成長速度（ $\mathrm{dl} / \mathrm{d} \theta$ ） av が既知であれば， P に対してEq．2－32より W_{t} が，したがってEq．2－30より装置容積V隹算出される。このとき必要な添加種晶量は $\mathrm{W}_{\mathrm{t}} \mathrm{x}\left(1_{\mathrm{s}} / \mathrm{l}_{\mathrm{p}}\right)^{3}$ である。

このような準安定域の操作の泠却速度は以下のようになる。回分操作における物質収支 より種晶添加後 θ 時間の結晶粒径 1 は

$$
\begin{equation*}
1=1_{\mathrm{s}}+\int_{0}^{\theta}(\mathrm{dl} / \mathrm{d} \theta) \mathrm{d} \theta \tag{2-33}
\end{equation*}
$$

溶液濃度Cは物質収支より

$$
\begin{equation*}
\operatorname{MV}\left(C_{n}-C\right)=\rho_{\Delta} N k_{v}\left(I^{3}-l_{s}^{3}\right) \tag{2-34}
\end{equation*}
$$

となる。
種晶（ 1_{s} ）は操作過冷却度がD 1 の時点で添加され，またこのときの成長速度を $\mathrm{dl} / \mathrm{d} \theta$ と すると粒径1はEq．2－33で変化する。またこの粒径と溶液濃度との関係はEq．2－34となり， Fig．2－17のA曲線に対応する。

Fig．2－17 Determination of cooling rate

そこで濃度軸の反対の軸に各濃度に対応する飽和温度を目盛ると $\mathrm{t}_{\mathrm{s}} \sim 1$ をも意味するの でts より Δt 低い B 線に従って冷却するとこの溶液はちょうど Δt の過飽和度で操作されるこ とになる。結晶粒径1の代わりにEq．2－33によって1に対して目盛られた θ 軸で B を読め ば最適操作線となる。その勾配より冷却速度が求まる。一方蒸発速度は，晶析装置内に保持される有効容積V＇は一定で，蒸発による減少量に相当する容積だけ溶液は供給されると すると装置内状態は次式となる。

$$
\begin{gather*}
V=\frac{V\left(\rho_{u}+M C\right)}{\rho_{u}}+N k_{v} l^{3}=\text { consi. } \tag{2-35}\\
\frac{d V}{d 0}=\frac{d v_{r}}{d \theta}-\frac{d v_{E}}{d \theta} \tag{2-36}
\end{gather*}
$$

ここで， $\mathrm{V}, ~ \mathrm{v}_{\mathrm{f}}$ ， V_{E} は溶媒基準の装置内溶液量，溶液の供給量および蒸発量で，ρ_{u} は溶液 の密度である。

この関係が保たれると蒸発速度 $\mathrm{dv}_{\mathrm{E}} / \mathrm{d} \theta$ は

$$
\begin{equation*}
\frac{\mathrm{d} \mathrm{~V}_{\mathrm{E}}}{\mathrm{~d} \theta}=\alpha\left\{1_{\mathrm{s}}^{2}+21_{\mathrm{s}}\left(\frac{\mathrm{dl}}{\mathrm{~d} \theta}\right)_{\mathrm{m}} \theta+\left(\frac{\mathrm{dl}}{\mathrm{~d} \theta}\right)_{\mathrm{m}} \theta^{2}\right\}=\alpha\left(\theta_{\mathrm{s}}+\theta\right)^{2}\left(\frac{\mathrm{dl}}{\mathrm{~d} \theta}\right)_{\mathrm{m}}^{2} \tag{2-37}
\end{equation*}
$$

となる。ここで，$\alpha, ~ \theta_{s}$ はそれぞれ次式である。

$$
\begin{gather*}
\alpha=\frac{3 N k_{v}}{C_{0}}\left\{\frac{\rho_{u}\left(C-C_{0}\right)}{\rho_{v}+M C}+\frac{\rho_{\mathrm{c}}}{M}\right\}\left(\frac{\mathrm{dl}}{\mathrm{~d} \theta}\right) \tag{2-38}\\
\theta_{\mathrm{s}}=I_{\mathrm{s}} /\left(\frac{\mathrm{dl}}{d \theta_{\mathrm{m}}}\right)_{\mathrm{m}} \tag{2-39}
\end{gather*}
$$

工業装置内の蒸発速度をEq．2－37のように制御するのは，装置内を側濁する結晶の表面積が変化するためである。しかし，工業装置内の蒸発速度をEq．2－37のように変化させる ことは容易でない。そのために蒸発速度をほぼ一定に保ち，溶液の供給速度 $\mathrm{dv}{ }_{\mathrm{f}} / \mathrm{d} \theta$ を変化 させる方法が用いられる ${ }^{261}$ 。その場合

$$
\begin{equation*}
\frac{d v_{\mathrm{f}}}{\mathrm{~d} \theta}=\left(-\frac{\mathrm{C}}{\mathrm{C}-\mathrm{C}_{0}}\right)\left\{\frac{\mathrm{dv}}{\mathrm{~d} \theta}-\frac{3 \rho_{\mathrm{s}} \mathrm{Nk}_{\mathrm{v}}}{\mathrm{MC}}\left(\mathrm{l}_{\mathrm{s}}+\left(\frac{\mathrm{dl}}{\mathrm{~d} \theta}\right)_{\mathrm{m}} \theta\right)^{2}\left(\frac{\mathrm{dl}}{\mathrm{~d} \theta_{\mathrm{m}}}\right)\right\} \tag{2-40}
\end{equation*}
$$

となる。この場合， 1_{p} と 1_{s} との間に大きな差のあるときは溶液の供給量を大幅に変化させ なければならない。その変化量が小さくなるようにするために，装置内溶液量の張り込み は少なめとし，以降䡛増する工夫がなされている。

$2 \cdot 2 \cdot \mathrm{~b}$ 連続晶析装置

連続晶析装置は装置内に懸濁している結晶の流動状態と液相の状態よりTable2－4のよ うに分類され，各装置形式に対して設計理論が提出されている。

Table 2－4 Classification of crystallizer depending on the hydrodynamic conditions of the liquid phase．

ПOCO	crystal	Solutan	actual crystallizer
Comeyor	perfect mixed	piston	DTB，DP（with classified product removal）
oenteat mixed	perfect mixed	perfect mixed	well stirred tank type
classitied（1）	piston	piston	Krystal Oslo，CEC type
Cassitied	piston	perfect mixed	Improved CEC type （ $\Delta \mathrm{C}=$ constant）

$2 \cdot 2 \cdot b \cdot \mathrm{i}) ~$ 完全混合型装置 ${ }^{2}$
装置内の状態として以下のモデルを設定する。
－粒径 1 の種晶は定常的に F で，また，過飽和度DC1の溶液はFで供給され，装置内では溶媒の減少はないとする。
－装置内各部分は均一状態であり，装置内に懸濁している結晶と同じ粒径分布の結晶が製品として取り出され，結晶の成長速度は $\Delta \mathrm{L}$ 法则に従い，次式で表されるとする。

$$
\begin{align*}
& \frac{d W}{d \theta}=3 \rho d_{v} l^{2} \frac{d l}{d \theta} \tag{2-41}\\
& \frac{d l}{d \theta}=V^{\circ} K_{n}(\Delta C) \tag{2-42}
\end{align*}
$$

粒径1なる結晶が装置内に滞留している時間を 0 とすると

$$
\begin{equation*}
\theta=\left(1-1_{s}\right) /\left(\frac{d l}{d \theta}\right)=\left(1-I_{s}\right) / V^{*} K_{n}(\Delta C) \tag{2-43}
\end{equation*}
$$

また，装置内の結晶の粒径分布を個数基準のN（1）$\delta 1$ および重量基準W $(1) \delta 1$ で表すと，それ ぞれ以下となる。

$$
\begin{align*}
& N(1) \delta l=N\left(l_{s}\right) \delta \operatorname{lexp}-\frac{\left(1-l_{s}\right) F}{V^{\prime} K_{0}\left(\Delta C_{a v}\right) V} \tag{2-44}\\
& \mathrm{~W}(\mathrm{l}) \delta \mathrm{il}=\rho_{\text {cklv }} \mathrm{l}^{3} \mathrm{~N}(1) \mathrm{\delta l} \tag{2-4.5}
\end{align*}
$$

W（1）$\delta 1$ の1に対して最大を示す 1 m は

$$
\begin{equation*}
1_{\mathrm{m}}=3\left(\frac{\mathrm{dl}}{\mathrm{~d} \theta}\right) \frac{\mathrm{V}}{\mathrm{~F}} \tag{2-46}
\end{equation*}
$$

の勾配より結晶成長速度が求まる。また $1=1 \mathrm{~S}$ の値 $\mathrm{N}\left(1_{\mathrm{s}}\right) \delta 1$ は $\delta 1$ 幅で表した種晶の添加量で あるが，種晶添加のない場合には $1_{\mathrm{s}}=0$ とし $\mathrm{N}\left(\mathrm{l}_{\mathrm{s}}\right) \delta 1$ を $\mathrm{dl} / \mathrm{d} \theta$ で割ると装置内の核発生速度が求まる。また装置内に懸濁している全結晶量WIは

$$
\begin{equation*}
W_{1}=\int_{1 \mathrm{~s}}^{\infty} \mathrm{W}(\mathrm{l}) \delta \mathrm{l}=\rho_{\mathrm{c}} F^{\prime} \mathrm{k}_{\mathrm{v}} \mathrm{l}_{\mathrm{m}}^{3}\left(\mathrm{x}_{\mathrm{s}}^{3}+\mathrm{x}_{\mathrm{s}}^{2}+\frac{2}{3} \mathrm{X}_{\mathrm{s}}+\frac{2}{9}\right) \mathrm{V} / \mathrm{F} \tag{2-47}
\end{equation*}
$$

となり，この W_{t} を滞留時間 V / F で割ると生産速度 P も求まる。ここで $\mathrm{x}_{\mathrm{S}}=0$ とおくと，種晶添加のない場合の装置内核発生速度F＇は次式となる

$$
\begin{equation*}
\mathrm{F}^{\prime}=9 \mathrm{P} / 2 \rho_{\mathrm{v}} \mathrm{Fk} \mathrm{v}_{\mathrm{v}} \mathrm{l}_{\mathrm{m}}^{3} \tag{2-48}
\end{equation*}
$$

ここで， x_{s} は無次元結晶粒径 $\mathrm{I}_{\mathrm{s}} / \mathrm{l}_{\mathrm{m}}$ で， $\mathrm{W}(1) \delta 1 / \mathrm{W}_{\mathrm{i}}$ と $\mathrm{x}\left(=1 / \mathrm{l}_{\mathrm{m}}\right)$ とをブロットすると $\mathrm{x}_{\mathrm{s}}=0$ の ときにはFig．2－18となり，この粒径分布の二つの変曲点E，Fは1 F 有 $1 / \sqrt{3}$ であり， $\mathrm{x}_{\mathrm{s}}<1 / 3$ では全結晶の約 $2 / 3$ はこの範囲に入ってくる。

Fig．2－18 Crystal size distribution of the product crystals in the continuous well－mixed bed crystallizer
以上の関係より，製品結晶の粒径を重量基準の最大値を示すモード径 1 m で示し， $(1 \pm 1 / \sqrt{ } 3) 1 \mathrm{~m}$ の範囲に所望粒径の約 $2 / 3$ あればよい場合，完全混合型装置を選定するとよい。晶析装置の設計は，生産速度 P ，製品モード径 1 m および添加結晶粒径 1 s は設定され，また所望特性の結晶を生産するに適した結晶成長速度 $\mathrm{dl} / \mathrm{d} 0$ も既に決定されているとすると次 のようになる。供給溶液の濃度は C_{1}（装置内の操作温度に対応した飽和濃度より表示し た過飽和度は $\Delta \mathrm{C}_{1}$ で表す），また装置内の溶液湄度，過飽和度はそれぞれ $\mathrm{C}_{\mathrm{av}}, ~ \Delta \mathrm{C}_{\mathrm{av}}$ で表 されるとすると，溶媒基準の装置容積Vは

$$
\begin{equation*}
\mathrm{V}=\mathrm{A}_{\text {w.м.в. }} \times(\text { C.F.C. })_{\text {w.м.в. }} \tag{2-49}
\end{equation*}
$$

であり，

$$
\begin{align*}
& A_{\text {W.M.B. }}=\frac{P I_{m}}{3 M V V_{0}\left(\Delta C_{1}\right)^{2}}=\frac{P I_{m}\left(\Delta C_{3 v}\right)}{3 M\left(\frac{d l}{d \theta}\right)\left(\Delta C_{1}\right)^{2}} \tag{2-50}\\
& (\text { C.F.C. })_{\text {w.м.B. }}= \tag{2-51}\\
& \quad \phi\left(x_{s}^{2}+\frac{2}{3} x_{s}+\frac{2}{9}\right) \\
& (1-1 / \phi)\left(x_{s}^{3}+x_{s}^{2}+\frac{2}{3} x_{s}+\frac{2}{9}\right)
\end{align*}
$$

であり，（C．F．C．）W．M．B ${ }^{\text {はFig．2－19の線図で表される。 }}$

Fig．2－19 Correlation between（C．F．C．） W．M．B．ϕ and x_{S}
ここで $\phi=\Delta \mathrm{C}_{1} / \Delta \mathrm{C}_{\mathrm{av}}$ であり，また $\mathrm{V}^{*}, \mathrm{M}$ はそれぞれ分子容および分子量であり， $\mathrm{A}_{\mathrm{W}} \mathrm{W}$ ．M．B は系および操作に特有な値より決定されるものである。（C．F．C．）W．M．B はf \ddagger よび s ，のみ の関数であり，装置形式を決めると系や操作条作には俱関係なものである。Eq．2－50，Eq． 2－51，よりVが決定されると実装置容積Vは

$$
\begin{equation*}
V^{\prime}=\frac{\left(\rho_{v}+C_{a v} M\right) V_{-}}{\rho_{u}}+\frac{P V}{F \rho_{i}} \tag{2-52}
\end{equation*}
$$

より決定される。この操作における装置内の結晶懸濁密度を $1-\varepsilon$ で表すと

$$
\begin{equation*}
1-\varepsilon=\frac{P V / F \rho_{c}}{P V / F \rho_{\mathrm{c}}+\left(\rho_{\mathrm{v}}+C_{a v} M\right) V / \rho_{u}} \tag{2-53}
\end{equation*}
$$

であり，1－عの値が小さいと装置の効率は低い。．，そのような場合，溶煤を蒸発させ $1-\varepsilon$ が大 きくなるような操作をすることが必要である。このような巷発型に対しては，Fは装置よ り排出される溶媒基準の溶液流量とし，また入口溶液濃度 C_{1} に対して次の式から推算さ

れる仮想入口濃度C 1^{*} を用いれば，これらの式をそのまま適用することができる。ここで， f は溶媒基準の溶液供給速度， $\mathrm{f} e v a p$ はこの装置での蒸発速度である。

$$
\begin{equation*}
C_{1}^{\circ}=\frac{C_{1} f}{F}=\frac{C_{1} f}{f-f_{\text {evap }}} \tag{2-54}
\end{equation*}
$$

$2 \cdot 2 \cdot b \cdot i i)$ 連続分級取り出し混合型晶所装置 ${ }^{281}$
D．T．B．型やD．P。型装置のようによ業装置内ではほぼ均一に近い混合状態である が，結晶のみが分級取り出しされる場合がしばしばある。この装置内においては，Fig． 2－20のように過飽和生成部と結晶成長部とを切り離し後者を考えると，そこでは1 ${ }^{\circ}$ なる粒径の種晶がF＇供給され，それが1pに成長するまで装置に滞留する。一方，過飽和生成部で

Fig．2－20 The model of the mixed－bed crystallizer with classified product removal $\Delta \mathrm{C}_{1}$ の過飽和度になった溶液は装置内を循澴して $\Delta \mathrm{C}_{2}$ に低下し，それが再び $\Delta \mathrm{C}_{1}$ に戻る操作が繰り返されるとする。結晶の成長速度がEq．2－42で表されるとすると，このモデル装置内に梖濁する全結晶量 W_{1} は，

$$
\begin{equation*}
W_{T}=\frac{\rho_{c} \cdot F^{\prime} k_{v^{\prime}} \cdot\left(l_{p}^{4}-I_{s}^{4}\right)}{4 \cdot V^{0} \cdot K_{o} \cdot\left(\Delta C_{\mathrm{av}}^{*}\right)} \tag{2-55}
\end{equation*}
$$

となり，$\Delta \mathrm{C}_{\mathrm{av}}{ }^{*}$ は $\Delta \mathrm{C}_{1}$ と $\Delta \mathrm{C}_{2}$ の対数平均過飽和度

$$
\begin{equation*}
\Delta \mathrm{C}_{\mathrm{av}}^{\cdot}=\frac{\Delta \mathrm{C}_{1}-\Delta \mathrm{C}_{2}}{\ln \left[\left(\Delta \mathrm{C}_{1}\right) /\left(\Delta \mathrm{C}_{2}\right)\right]} \tag{2-56}
\end{equation*}
$$

となる。したがって装置容積Vは

$$
\begin{equation*}
V^{\prime}=A_{C . B, V . X}(C \cdot F \cdot C .)_{C . B . v .} \tag{2-57}
\end{equation*}
$$

で，$A_{C . B . V}$ および（C．F．C．）C．B．Vはそれぞれ

$$
\begin{equation*}
A_{\text {c.B.v. }}=\frac{P l_{p}}{4 \rho_{d}(1-\varepsilon)\left(\frac{d l}{d \theta}\right)} \tag{2-58}
\end{equation*}
$$

$$
\begin{equation*}
\text { (C.F.C. })_{\text {C.B. } . ~}=\frac{\left(1-\mathrm{x}_{\mathrm{s}}^{4}\right) \ln \phi}{1-(1 / \phi)} \tag{2-59}
\end{equation*}
$$

となる。またFig．2－20に示したモデル循擐流速Fは

$$
\begin{equation*}
\mathrm{F}=\mathrm{A}_{\mathrm{C} . \mathrm{B} . \mathrm{F} .} \times(\mathrm{C} . \mathrm{F} . \mathrm{C} .)_{\mathrm{C} . \mathrm{B} . \mathrm{F}} \tag{2-60}
\end{equation*}
$$

で

$$
\begin{gather*}
\mathrm{A}_{\text {C.B.F. }}=\frac{\mathrm{P}}{\mathrm{M} \Delta \mathrm{C}_{1}} \tag{2-61}\\
\text { (C.F.C.) }{ }_{\text {C.B.F. }}=\frac{1-\mathrm{x}_{s}^{3}}{1-(1 / \phi)} \tag{2-62}
\end{gather*}
$$

である。（C．F．C．）C．B．V．および（C．F．C．）C．B．F．はそれぞれFig．2－21およびFig．2－22とな る。

Fig．2－21 Correlation between（C．F．C．） C．B．V．, x_{s} and ϕ
i），ii）に示した混合型装置の必要容積の決定には結晶成長速度および操作可能な過飽和度 $\Delta \mathrm{C}_{\mathrm{av}}$ ，いおよび $\Delta \mathrm{C}_{1}$ を決定することが大切である。操作可能な過飽和度の決定には，核化速度を基にした過溶解度やラボテストで所望の結晶が得られたときの最大過飽和度を用 いる。また，結晶成長速度もラボテストで得られる結晶が所望の粒径や特性をもっている ときの成長速度を用いる

工業装置内の晶析現象は，一般には成長した結晶を破砕することなく十分懸濁させる状態に保つことが大切である。またD．T．B．型装置では㮔晶を添加することはほとんどない。 この装置にFig．2－20に示したモデル装置を適用する場合，微小結晶除去装置で取り出さ れる最大粒径をもつて1s㘼えるとよく，この考えはまた微小結晶除去装置の設計に用い られる。

Fig．2－22 Correlation between（C．F．C．）C．b．F．， x_{S} and ϕ

$2 \cdot 2 \cdot \mathrm{~b} \cdot \mathrm{iii}$ ）連続分級層型晶析装置：${ }^{(9)}$

分級層型装置のモデルとしてはFig．2－23を考える。この装置では形状が円筒で，種晶 は粒径 dp_{2} のものが塔頂より供給され，装置内では固液流動特性式によって顛濁し，所望粒径に成長したものは塔底部に到達する。一－方，溶液は塔底部に過飽和度 $\Delta \mathrm{C}_{1}$ のものが供給され，それが懸濁している結晶の間を通過し，脱過飽和をしつつ C C 2 となって塔頂部か ら装置外に排出される。通常分級層型で対象となる結晶は，その沈降の終末速度はアレン の範囲にあり，また晶析装置内の流動特性としては，食塩結晶を用いて得られている諏訪 らの式を用いると，塔高Zおよび塔断面積Sの算出式として次式が得られている。

$$
\begin{equation*}
\left.\mathrm{Z}=\frac{0.6 \rho \mathrm{k}_{\mathrm{v}} \mathrm{P}_{2} l_{2} \ln \phi}{\mathrm{M} \Delta \mathrm{C}_{1}} \frac{\mathrm{E}_{2} l_{2}^{2 /}(\mathrm{C} . \mathrm{F} \cdot \mathrm{D} .)}{\mathrm{C}^{1} \mathrm{D}^{2 /} \mathrm{G}^{1 / 3}}+\frac{1.6(\mathrm{C} \cdot \mathrm{~F} \cdot \mathrm{SR} \cdot)}{\mathrm{K}_{\mathrm{R}}}\right\} \tag{2-63}
\end{equation*}
$$

ここで，$y_{1}=l_{1} / l_{2}, \phi=\Delta C_{1} / \Delta C_{2}$ とおくと

Fig．2－23 The model of the classified－bed crystallizer

$$
\begin{gather*}
\text { C.F.D. }=\int_{1}^{y_{1}} \frac{\phi y^{103} d y}{\left(1-\varepsilon_{2} y^{-1 / 3}\right)\left\{1+\frac{(\phi-1)\left(y^{3}-1\right)}{\left(y_{1}^{3}-1\right)}\right\} \ln \phi} \tag{2-64}\\
\text { C.F.SR. }=\int_{1}^{y_{1}} \frac{\phi y^{3} d y}{\left(1-\varepsilon_{2} y^{-1 / 3}\right)\left\{1+\frac{(\phi-1)\left(y^{3}-1\right)}{\left(y_{1}^{3}-1\right)}\right\} \ln \phi} \tag{2-65}
\end{gather*}
$$

で矿り，それらは $\varepsilon=0.9$ に対してFig．2－24，Fig．2－25となる。

Fig．2－24 Correlation between（C．F．D．）$\varepsilon_{2}=0.9$ and y_{1}

Fig．2－25 Correlation between（C．F．SR．）$\varepsilon_{2=0.9}$ and y_{1}

$$
\begin{equation*}
S=\frac{P}{M \Delta C_{1}\{1-(1 / \phi)\} C^{(}\left(\varepsilon_{y} / 1.05\right)^{3} I_{p 2}} \tag{2-66}
\end{equation*}
$$

である。これらの関係式においては，装置単位容積内の結晶の成長速度dW／d θ は

$$
\begin{equation*}
\frac{1}{M} \frac{d W}{d \theta}=k_{o a}\left(C-C_{s}\right)=k_{D} a\left(C-C_{i}\right)=k_{R} a\left(C_{i}-C_{s}\right) \tag{2-67}
\end{equation*}
$$

流動特性として

$$
\begin{equation*}
\varepsilon=1.05\left(\mathrm{G} / \mathrm{Id}_{\mathrm{p}}\right)^{1 / \beta} \tag{2-68}
\end{equation*}
$$

また， k_{D} としては

$$
\begin{equation*}
i_{d}=1.6 \mathrm{Re}^{-2 / 2 / \varepsilon} / \varepsilon \tag{2-69}
\end{equation*}
$$

を用いて

$$
\begin{equation*}
\mathrm{k}_{\mathrm{D}}=1.6 \mathrm{C}^{\prime} \cdot \mathrm{D}^{2 / 3} \mathrm{G}^{1 / 2} / \mathrm{d}_{\mathrm{p}}^{1 / \beta} \varepsilon \tag{2-70}
\end{equation*}
$$

が得られた。
装置内で核が発生し，種晶を添加することなく，それを成長させて製品とすることが多 い。そのためには装置内での核化速度をも考慮して設計しなければならない。しかし，装置内の核化速度を推算し，それと成長速度に基づく設計は一部の系で試みられているにす ぎない ${ }^{301}$ 。多くの場合，バイロットブラントにおいて所望䊉径の製品が得られるときの塔底部入口溶液過飽和度を笑測し，それと筞しい過飽利度を用いると工業装置でもパイロッ トプラントとほぼ同程度の核化速度が期待できる。分級層型晶所装置内の核化速度を推算 すると，核発生の大部分は塔底部で起こる。このように考えるとバイロットプラントの塔高は少なくとも 1 m 以上であることが必要である。

バイロットプラントのデータの整理法としては，Eq．2－63より誘導されるEq．2－70また はEq．2－71を用いる。
I）拡散段階律速

$$
\begin{equation*}
\mathrm{Z}=\frac{\alpha_{D} \mathrm{P}_{1} \mathrm{~d}_{1}^{1 / 3}(C . F . D .) \ln \phi}{\mathrm{y}_{1}^{1 / 3 /} \Delta \mathrm{C}_{1}} \tag{2-70}
\end{equation*}
$$

II）表面段階律速

$$
\begin{equation*}
\mathrm{Z}=\frac{\alpha_{\mathrm{R}} \mathrm{P}_{1} \mathrm{~d}_{\mathrm{p} 1}(\mathrm{C} . \mathrm{F} . \mathrm{SR} .) \ln \phi}{\mathrm{y}_{1}^{\dagger} \Delta \mathrm{C}_{1}} \tag{2-71}
\end{equation*}
$$

パイロットプラントのデータより上式中の $\mathrm{Z} \Delta \mathrm{C}_{1}$ に対して $\mathrm{P}_{1} \mathrm{~d}_{\mathrm{p} 1}{ }^{4 / 3}$（C．F．D．） $\ln \phi / \mathrm{y}_{1}{ }^{4(1 / 3)}$ および $\mathrm{P}_{1} \mathrm{~d}_{\mathrm{p} 1}$（C．F．SR．） $1 \mathrm{n} \phi / \mathrm{y}_{1} 4$ を算出し，それらのブロットが原点通過の直線とよく一致 する方より，対象となる系の操作が拡散段階律速か表阇段階律速かを決定する。それより設計定数 α_{D} または α_{R} を求めて，分級層型装置の設計をするい。

円筒型パイロット装置から得られる α_{D} または α_{R} を用いると，装置内空間率を塔底部の それと等しくなるような门錐型では10～20\％の生度効率のアッブが期街できる。円錐型装置の断面積 S_{y} は装置内に懸濁する結晶の粒径 $\mathrm{y}(=$ 塔底部の粒径／塔頂部の粒径）に対し て

$$
\begin{equation*}
\mathrm{S}_{y}=\frac{1.16\left(\mathrm{P}_{1}-P_{2}\right)}{\mathrm{MC}^{\prime}\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right) / \varepsilon^{3} \mathrm{~d}_{\mathrm{p}_{2} y} y} \tag{2-72}
\end{equation*}
$$

となる。一方，塔高ZはEq．2－70またはEq．2－71で得られた α_{D} または α_{R} を用いると，そ れぞれが適用されるのに対してEq．2－73またはEq．2－74から算出される。

$$
\begin{align*}
& Z=\frac{0.86 \alpha_{\mathrm{D}} I \varepsilon^{3} P_{1} \mathrm{~d}_{\mathrm{P}}^{7 / 3} C^{\prime}(C . F \cdot D .)_{e=c o n s t}}{F(1-\varepsilon) \Delta C_{1} y_{1}^{163}} \tag{2-73}\\
& Z=\frac{0.86 \alpha_{R} I \varepsilon^{3} P_{1} \alpha_{p 1}^{2} C^{\prime}(C . F \cdot S R .)_{e \text { const }}}{F(1-\varepsilon) \Delta C_{1} y_{i}^{5}} \tag{2-74}
\end{align*}
$$

ここで，（C．F．D．）$\varepsilon_{\varepsilon=\text { const }}$ および（C．F．SR．）$)_{\varepsilon=\text { const }}$ はそれぞれFig．2－26，Fig．2－27であ る。
円錐型装置の形状はyをパラメーターとして塔頂部からの距離Z y の点綴で決定され，この Z_{y} はEq．2－75 の ϕ_{y} を

$$
\begin{equation*}
\phi_{y}=\left(\frac{\phi-1}{y_{1}{ }^{3}-1}\right)\left(y^{3}-1\right)+1 \tag{2-75}
\end{equation*}
$$

Eq．2－73またはEq．2－74の中の代わりに用いると得られる。また，このときの塔径D D_{y} は Eq． 2－76となる。

$$
\begin{equation*}
D_{y}=\sqrt{4 S_{y} / \pi} \tag{2-76}
\end{equation*}
$$

この D_{y} と Z_{y} を ϕ_{y} をパラメーターとして点綴すると装置形状を決定することができる。

Fig. 2-26 Correlation between (C.F.D.) $\varepsilon=$ const ${ }^{\text {and }} y_{1}$

Fig. 2-27 Correlation between (C.F.SR.) $\varepsilon=$ const ${ }^{\text {and }} \mathrm{y}_{1}$
$2 \cdot 2 \cdot \mathrm{~b} \cdot \mathrm{iv}$ ）製品粒径と生産量に基づく装置設計理論
連続晶析装置の定常操作時の製品粒径がEq．2－77で示されるRosin－Rammlerの式で表 されるとすると装置容積当りの結晶の生産速度P／$\rho_{\mathrm{c}} \mathrm{V}^{\prime}$ はEq．2－78，Eq．2－79となる。

$$
\begin{align*}
& r=\int_{1}^{\infty} N(1) d l=\cdots=e^{-(n)^{n} m}=e^{-x^{m}} \tag{2-77}\\
& \int_{0}^{\infty} \mathrm{N}(\mathrm{l}) \mathrm{dl} \\
& \frac{\mathrm{P}}{\rho_{0} V^{\prime}}=1^{\circ .3} \mathrm{Fv} \mathrm{k}_{\mathrm{v}} \mathrm{~m} \int_{0}^{\infty} \mathrm{x}^{m+2} \mathrm{e}^{-e^{m}} \mathrm{dx} \tag{2-78}
\end{align*}
$$

式中のrはEq．2－77で示されているように個数基準の積算結晶粒径分布であり，1は粒径で あるが， 1^{*} は $\mathrm{r}=0.3679$ のときのものである。 x は $1 / 1^{*}$ で示した無次元粒径であり，製品の粒径•粒径分布は1 ${ }^{*}$ およびxの指数であるmによって表される。実際の工業操作で得られ る結晶の粒径分布がEq．2－77で表されることが多い。また，Eq．2－78は製品結晶の生産速度を表したものである。左辺の P は結晶の生産速度 $[\mathrm{kg} / \mathrm{h}], ~ \rho_{\mathrm{c}}$ は結晶の密度 $\left[\mathrm{kg} / \mathrm{m}^{3}\right], ~ V^{\prime}$ は有効装置容積 $\left[\mathrm{m}^{3}\right]$ で全憝濁液量を表す。右辺 $\mathrm{F}_{\mathrm{v}}{ }^{\prime}$＇は有効装置容積当りに発生した結晶核 の発生速度［number $\left./ \mathrm{m}^{3} \mathrm{~h}\right]$ ， k_{v} は形状係数で $\mathrm{k}_{\mathrm{v}} 1^{* 3}$ は1 1^{*} の粒径の結晶の体積を表すもので ［m］x［積分項］は粒径分布に基づく補正項である。Eq．2－79は装置容積当りの生産速度を ［装置内の見かけの懸濁密度（ $1-\varepsilon$ ）］／［見かけの滞留時間］として相関したもので， （ $\mathrm{d} 1 / \mathrm{d} \theta$ ） av は装置内の平均結晶成長速度表すとすると， $1^{*} /(\mathrm{dl} / \mathrm{d} \theta) \mathrm{av}$ は結晶の見かけの滞留時間となる。左辺にある積分項は，Rosin－Rammlerの式で粒径分布を表したときの生産量に基づく見かけの滞留時間と結晶粒径に基づく見かけの滞留洔間との相関をあらわすも ので，それをEq．2－80

$$
\begin{equation*}
I=\frac{\left.\int_{0}^{\infty} x^{m} e^{-x m} d x\right|_{0} ^{\infty} x^{3} e^{-x^{m}} d x}{\left.\int_{0}^{\infty} e^{-x^{m}} d x\right|_{0} ^{\infty} x^{m+2} e^{-x^{m}} d x} \tag{2-80}
\end{equation*}
$$

のようにIで表すと，Iとmの関係はFig．2－28のごとくなる。Eq．2－77～Eq．2－80に基づい て連続晶析装置特性を検討すると次のようになる。
製品結晶粒径は1 ${ }^{*}$ によって表すことはできるが，重量基準の粒径分布で最大値を示す粒径を 1_{m} とすると 1_{m} と 1^{*} との間にはEq．2－81の関係がある。

$$
\begin{equation*}
l_{m}=\left(1+\frac{2}{m}\right)^{1 / m} l^{0} \tag{2-81}
\end{equation*}
$$

したがって，Eq．2－78，Eq．2－79はそれぞれEq．2－78＇，Eq．2－791

$$
\begin{align*}
& \frac{P}{\rho_{c} V}=1_{m}{ }^{3} F_{v} \cdot k_{v}\left(1+\frac{2}{m}\right)^{-3 / m} m \int_{0}^{\infty} x^{m+2} e^{-x m} d x \tag{2-78'}\\
& \quad \stackrel{P}{\rho_{c} V}\left\{\frac{l_{m}}{\left(1+\frac{2}{m}\right)^{1 / m}}\right\} I=(1-\varepsilon)\left(\frac{d l}{d \theta}\right) \tag{2-78"}
\end{align*}
$$

となる。

Fig．2－28 Correlation between I and m
これらの関係式を用いて $\mathrm{P} / \rho_{\mathrm{c}} \mathrm{V}^{\prime}, ~{ }^{1} \mathrm{~m}$ または I_{w}（重量基準の粒径分布の $\mathrm{r}=0.3679$ のとき の粒径），m（またはn，重量基準分布の均等数）， $\mathrm{F}_{\mathrm{v}}{ }^{\prime} \mathrm{k}_{\mathrm{v}}$ ，$(\mathrm{dl} / \mathrm{d} \theta)_{\mathrm{av}}$ ，（ $\left.1-\mathrm{\varepsilon}\right)$ の関係を図示 するとFig．2－29のごとくなり，これを用いると，装置•操作の設計は容易に行うことが できる。

いま 1 m を設定した場合装置容積当りの生産速度 $\mathrm{P} / \rho_{\mathrm{c}} \mathrm{V}^{\prime}$ が大きくなるような装置•操作条件を選定することは工業操作で重要である。そこでEq．2－78＇，Eq．2－79＇のなかのmに関する項をそれぞれ I_{1} ， I_{2} で示すと，それぞれ，Eq．2－82，Eq．2－83で示される。

$$
\begin{gather*}
I_{1}=\left.\left(1+\frac{2}{m}\right)^{-3 / m} m\right|_{0} ^{\infty} x^{m+2} e^{-x m} d x \tag{2-82}\\
I_{2}=\left(1+\frac{2}{m}\right)^{-1 / m} I \tag{2-83}
\end{gather*}
$$

I_{1} ，I_{2} をmに対して点綴するとそれぞれFig．2－30，Fig．2－31となる。Eq．2－79より1m を一定としてP／$\rho_{C} V^{\prime}$ を大きくするためにはEq．2－79＇，Eq．2－83より得られるEq．2－84の右辺が大きくなるようにすることが必要である。

$$
\begin{equation*}
\frac{\mathrm{P}}{\rho_{\mathrm{c}} \mathrm{~V}}=(1-\varepsilon)\left(\frac{\mathrm{dl}}{\mathrm{~d} \theta_{\mathrm{av}}} \mathrm{I}_{2}^{-1} l_{\mathrm{m}}^{-1}\right. \tag{2-84}
\end{equation*}
$$

それは $(1-\varepsilon)(\mathrm{dl} / \mathrm{d} \theta) \mathrm{av}$ を大きくし，また I_{2} が小さくなるようにすることである。また，

定常操作ではEq．2－78＇，Eq．2－79＇とも同時に成立しなければならずそのことよりEq．2－ 85 が成立する。すなわち連続晶析装置の安定操作時には装置容積当りの核発生速度 $F_{v}{ }^{\prime}$ はEq．2－85を満足しなければならない。

以上を総括すると次の（1）～（4）の各項の検討が工業操作で重要となる。
（1）（1－モ）を可能なかぎり大きくする。操作吅能な最大懸濁密度は装置型式とも関係 し，また $\mathrm{F}_{\mathrm{v}}{ }^{\prime}$ や（ $\left.\mathrm{dl} / \mathrm{d} \theta\right)_{\mathrm{av}}$ にも影響するので十分注意する必要がある。
（2）（ $\mathrm{d} 1 / \mathrm{d} \theta)_{\mathrm{av}}$ を許されるかぎり大きくする。（ $\left.\mathrm{dl} / \mathrm{d} \theta\right)_{\mathrm{av}}$ を大きくするには平均過飽和度，操作温度，流動条件等の成長速度に影響する因子を選定することが重要である。し かし，これらの因子はF v^{\prime} 化も影響するので許容最大成長速度を決定することは慎重に行わねばならない。
（3）粒径分布を表琴するmに対して I_{2} は単調に減少し，m $\rightarrow \infty$ すなわち均一粒径の製品に対して I_{2} は最小値 0.25 となる。それより，より均一な製品を生産することが I_{2} を小 さくすることと同じ意味となる。
（4） F_{v}＇は前にも触れたようにEq．2－87を満足しなければならない。一方，核発生機構は $2 \cdot 1 \cdot b \cdot i i)$ で述べたように複雑であり，操作過飽和度やその他の多くの操作条件 の影響を受ける。（2）の（ $\mathrm{d} 1 / \mathrm{d} \theta)_{\mathrm{av}}$ や（1）の $(1-\varepsilon)$ を大きくすると一般的には $\mathrm{F}_{\mathrm{v}}{ }^{\prime}$ も大 きくなる。装置内で発生する $\mathrm{F}_{\mathrm{v}}{ }^{\prime}$ がEq．2－87の算出値より大き過ぎる場合には過剩核を除去しなければならず，また，発生した $\mathrm{F}_{\mathrm{v}}{ }^{\prime}$ がEq．2－87からの算出値より小さい場合に は種晶を添加しなければならない。実際の工業操作においては（ $\mathrm{d} 1 / \mathrm{d} \theta$ ） av および $(1-\varepsilon)$ を大きく保ちつつ装置内で発生する核発生数がEq．2－85の算出値に近いことが望ましく， そのような操作条件の決定には核発生機構をよく理解することが必要である。

Fig. 2-30 Correlation between I_{1} and m

Fig. 2-31 Correlation between I_{2} and m

References

1）Jones，W．J．and Portington，J．R．：J．Chem．Soc．， 107 ， $1019(1915)$
2）Dundon，M．L．and Mack，E．：J．Am．Chem．Soc．，45，2479（1923）
3）Knapp，L．F．：Trans．Faraday Soc．， 17,457 （1922）
4）河上忠男，久保田徳昭：分離技術， $10,2,39(1980)$
5）豊倉 賢，青山吉雄：＂晶析＂P．7，化学工業社（1972）
6）城塚 正，豊倉 賢：化学T学，26，12，1266（1962）
7）Volmer，M．：Z．Electro Chem．，35，555（1929）
8）Turnbull，D．and Fischer，J．C．：J．Chem．Phys．，17，71（1949）
9）Pound，G．M．and Lamer，V．K．：J．Am．Chem．Soc．，74，5，2323（1952）
10）Garside，J．，I．T．Rusli and M．A．Larson：AIChE J．，25，57（1979）
11）Johnson，R．T．，Rousscau，R．W．and W．L．McCabc：AIChE Symp．Ser．， $68,31(1972)$

12）Evans，J．W．，G．Margolis and Sarofim，A．F．：AlChE J．，20， 950 （1974）
13）豊倉賢，山添勝已，化学工学論文集，1，262（1975）
14）豊倉賢ら，化学工学論文集，6，602（1980）
15）Toyokura，K．，et al，J．of Chem．Eng．of Japan，10，35（1977）
16）豊倉賢ら，化学工学論文集，15，596（1979）
17）豊倉 賢，矢後夏之助，山添勝巳，青山吉雄，：化学工学論文集，2，6，561（1976）
18）村田芳治，本多太次郎：化学工学論文集，1，4，427（1975）
19）McCabe，W．L．and Stevens，R．P．：Chem．Eng．Prog． 47 ，4， 168 （1951）
20）石井 勉，藤田重文：化栄 T．学，29，5，316（196．5）
21）Gupta，A．S．絵 tal：AlChE J．，8，5，5．57（1962）．
22）Bunn，C．W．，Emmett，H．：Disc．Faraday Soc．，5， 119 （1949）
23）Bunn，C．W．：Disc．Faraday Soc．，5，132（1949）
24）Hillig，W．B．，Turnbull，D．：J．Chem．Phys．，24，4， 914 （1956）
25）城塚 正，豊倉 賢，松本 要：化学工学，28，3，221（1964）
26）豊倉賢，青山吉雄：＂ジェイスデザインマニュアル晶析II＂，ジェイスリサーチセンター（1984）
27）城塚正，豊倉賢，杉山交彦，：化学工学，30，9，833（1966）
28）Shirotsuka，T．and K．Toyokura ：C．E．P．Symposium Series，67，110，145（1971）．
29）城塚正，豊倉賢，関谷洋輔：化学工学，29，9，698（1965）
30）豊倉賢：化学工学論交集，2，6，561（1976）
31）豊倉賢，青山吉雄：＂ジェイスデザインマニュアル晶析II＂，ジェイスリサーチセンター（1984）

3 塩化ナトリウム水溶液の濃度と密度

塩化ナトリウム水溶液の溶解度，密度については化学便覧にTable 3－1，Fig．3－1の値 が収録されている。

Table 3－1 Solubilily of NaCl in $\mathrm{H}_{2} \mathrm{O}$

K!	Ig / L	Inol..kg + Hz ol	$\begin{array}{ll} \text { Yerglcmt } \\ \hline \end{array}$
0	26.3	6.105	14.26
10	26.31	6.108	14.78
20	26.38	6.130	15.28
25	26.43	6.146	15.52
30	26.50	6.168	15.76
40	26.65	6.216	16.24
50.	26.83	6.273	16.69
60.	27.05	6.344	17.13
80	27.54	6.503	17.98
100	28.2	6.720	18.76

＊calc．values
＊＊surface energy calc．from solubility data by Nakai＇s method．
$\left(\mathrm{MW}=58.4, \rho_{\mathrm{s}}=2.16, \mathrm{~V}_{\mathrm{m}}=4.49 \times 10^{-23}\right)$

Fig．3－1 Solubility curve

一方 NaCl は非常に核化しやすく，条件によるが，逆円錐型晶析装置での準安定濃度幅 $\Delta \mathrm{m}_{\mathrm{s}}{ }^{\prime}$ は $0.2 \mathrm{~g} / 100 \mathrm{~g}-\mathrm{soln}$ 。（ $\Delta \mathrm{m}_{\mathrm{s}}$ では $0.03 \mathrm{~mol} / \mathrm{kg}-\mathrm{H}_{2} \mathrm{O}$ ，無次元過飽和度 $\mathrm{S}^{\prime}\left(\mathrm{m} / \mathrm{m}_{\mathrm{s}}\right)-1$ では 0.005 ）と極めて小さい。したがって，測定精度として，温度 $\pm 0.1^{\circ} \mathrm{C}$ ，濃度士 0.01 $\mathrm{g} / 100 \mathrm{~g}$－soln．以上の精度が必要である。このような高精度を必要とする系では飽和溶液調製時の＂飽和＂の妥当性がしばしば問題となる。また，濃度の連続測定が必要であるこ となどから溶液濃度の測定法を検討した。

電気伝導度による濃度測定は上記の精度を出すことは容易でない。Fig．3－2にウベロー デ粘度計による粘度 $\eta \sim$ 濃度 m^{\prime} の関係（飽和溶液の流動の活性化エネルギーとして18 $[\mathrm{kJ} / \mathrm{mol}]$ ）を示す。また，比重瓶を用いて密度 $\rho \sim \mathrm{m}$ ’の関係も測定した。

Fig．3－2 Viscosity vs．Conc．

これらの結果，測定に必要な試料量が比較的少なく，測定が比較的簡便な密度測定法を採用した。

さらに，特に各温度における飽和濃度近傍（ $\mathrm{C}_{\mathrm{s}} \sim \mathrm{C}_{\mathrm{s}}-0.2 \mathrm{wt} \%$ ）の測定精度の向上を期 するため，固有振動方式密度比重計（京都電子工業（株）DA－210，精度 $\pm 1 \times 10^{-5} \mathrm{~g} / \mathrm{cm}^{3}$ ） を用いて密度～濃度の関係を測定した。
$3 \cdot 1$ 実験装置と方法
溶液の密度の測定には固有振動方式密度計（京都電子工業（株）DA－210，精度土 $1 \times 10^{-5} \mathrm{~g} / \mathrm{cm}^{3}$ ）を用いた。測定セル中の試料液体あるいは気体を自然振動させたとき，そ の振動周期は測定セル内の試料の密度によって，それぞれ異なった値を示す。未知試料溶液の密度 ρ は次式によって求めた。

$$
\rho=\rho_{r}-F\left(\tau_{r}^{2}-\tau^{2}\right)
$$

ρ と ρ_{r} はそれぞれ未知試料と標準試料の密度である。Fは所定の温度と圧力の時に決 まる定数で密度の判っている2つの標準物質（ $0.45 \mu \mathrm{~m}$ メンブレンフィルターで濾過した脱気蒸留水と乾燥空気）の振動周期から求めた。また，τ と r_{r} はそれぞれ来知試料と標準試料の自然振動周期である。密度計の溶液温度は士0．01 C に制御した。

試料水溶液の調製は 120 C ， 24 hr r乾燥した特級塩化ナトリウム（マナック製）を所定量秤量し蒸留水に溶解することで行った。所定の測定温度において密度を測定した試料の濃度は各温度の飽和濃度付近のものとした。また，実験設定条件をTable 3－2に示した。準備した試料の濃度の検定は，重量分析で行った。試料を5 ml採取し，恒量にしたサン プル瓶に入れ素早く重量既知のテフロンシールをし，重量を測定した。その後，テフロン シールをはずし，ホットブレート（東芝電気保温トレイ： $100 \mathrm{~V}, ~ 130 \mathrm{~W}$ ）の上で 24 hr乾燥し，秤量することで行った。

Table 3－2 Conditions of density measurements

	（25：\％	26.0	26.2		26：\％	26：8	210
20	＊	＊	＊	＊			
30	＊	＊	＊	＊			
40		＊	＊	＊	＊		
50		＊	＊	＊	＊		
60			＊	＊	＊	＊	＊

＊setting condition

$3 \cdot 2$ 結果と考察

Fig．3－3に種々の温度（ $\left.\theta=20^{\circ} 6^{\circ} \mathrm{C}\right)$ において得られた飽和濃度付近：$\triangle \mathrm{C}=\mathrm{C}-\mathrm{C}_{\mathrm{S}}$ $=0.2 \sim 0.7 \mathrm{wt} \%$ ，$\left(\mathrm{C}-\mathrm{C}_{\mathrm{S}}\right) / \mathrm{C}_{\mathrm{S}}=0.007 \sim 0.2$ ，の密度 $\rho_{\mathrm{F}}\left[\mathrm{g} / \mathrm{cm}^{3}\right]$ と濃度 $\mathrm{C}[\mathrm{wt} \%]$ の関係を プロットした。 $20 \sim 35^{\circ} \mathrm{C}$ ではEq．3－1に，35～60 CではEq．3－2に濃度の誤差0．01 wt \％以下で回帰することができた。

$$
\begin{gather*}
\rho_{\mathrm{F}}=\mathrm{C} \exp \left(-\frac{3782}{\theta+273.15}-6.007\right)+0.9309+0.01105 \ln \theta \tag{3-1}\\
\rho_{\mathrm{F}}=\mathrm{C} \exp \left(\frac{3782}{\theta+273.15}-6.007\right)+0.723824+0.193810 \ln \theta+0.053697(\ln \theta)^{2}+0.0052 .53(\ln \theta)^{3} \tag{3-2}\\
\theta=35-60^{\circ} \mathrm{C}
\end{gather*}
$$

Fig．3－3 Density vs．concentration
塩化ナトリウムの密度と濃度の関係はChenら＂によってC $=0.001 \sim 1.5 \mathrm{~mol} / \mathrm{kg}-\mathrm{soln}$ の範囲で，また，Scrutonら＂によって飽和濃度における値としてEq．3－3が得られている。前者の関係式は高未飽和度で行われたものであるが，本价究結果とは， $\mathrm{C}=\mathrm{C}_{\mathrm{S}}$ での， Eq 。 3－3による $\rho_{\mathrm{F}, \mathrm{S}}$ 値はEq．3－1とEq．3－2による値と，小数点以下3位までの精度で一致した。

$$
\begin{equation*}
\rho_{F, s}=1209-4.301 \times 10^{-4} \theta\left[\mathrm{~g} / \mathrm{cm}^{3}\right] \tag{3-3}
\end{equation*}
$$

References

1）Chen，C．T．A．and Chen，J．H．，J．Chem．，Eng．Data，25，307（1980）
2）Scruton，A．and Grootscholten，P．A．M．，Trans．I．Chem．E，59，238（1981）

4 塩化ナトリウム結晶成長についてのその場観察実験

$4 \cdot 1$ 実験方法

結晶成長のその場観察用装置をFig．4－1に示した。

Fig．4－1 Experimental set－up for in－situ observation
成長セル1の底面に接着剤で種晶を固定しておき，このセルに所定温度の過飽和溶液を $4.2 \mathrm{~cm}^{3} / \mathrm{sec}$ の流量で流して，種晶を成長させた。溶液はタンクフから供給し，流量はバル ブで調節した。セルの温度は，ジャケットに恒温の水を循環させて一定（ $30^{\circ} \mathrm{C}$ ）に保持 した。結晶の成長挙動は，微分下啮顕微鏡を用いてその場観察した。また，ビデオに収録 された画像から，成長速度 $\mathrm{G}(=\mathrm{dL} / \mathrm{d} \theta$ ， L は種晶の 1 辺の長さ）およびステップの移動速度を求めた。

$4 \cdot 2$ その場観察の結果

試薬ビンから取り出した市眅結晶を成長させると，表面上のいたるところに監化ナトリ ウム特有の立方体状の微結晶が発生し，それがあたかも柱のように成長した。また，実験前にガラス容器に入れて振とうし結晶表面に意識的に傷をつけた結晶も，成長させるとや はり表面に多数の柱状晶が見られ，一見凝集晶のようであった。しかし，セル内で自然に発生した結晶を成長させた場合は，結晶表而は非常にスムースであった。

4•3顕微鏡下の結晶成長速度と過飽和度の関係
静止過飽和溶液中で自然に発生した結晶を種晶として用い，成長速度を測定した。その結果を，Fig．4－2に示した。

Fig．4－2 Growth rate versus supersaturation（in－situ observation）

撹䢁条件下における成長速度に比較して，少し低い値が得られた。

4•4ステップ移動速度

成長速度測定に用いた結晶と同様に静止過飽和溶液中で自然に発生させた結晶について， ステップの移動速度を測定した。その値は先に示した成長速度（ F （Fig．4－2）よりも， 5倍程度速かった。ここで用いた種晶の場合は，ステッブが観察されたが，撹抖条件下の場合は，ステップは観察されなかった。

5 小型逆円錐型装置による塩化ナトリウム結晶成長速度と結晶成長速度係数

$5 \cdot 1$ 実験

$5 \cdot 1 \cdot \mathrm{a}$ 結晶成長
実験装置の概略をFig．5－1に示す。

Fig．5－1 Experimental apparatus
逆円錐型装置は上辺 90 mm ，下辺 10 mm ，高さ 100 mm のガラス製で，外側に温度調節用循環水ジャケットを設けた。実験方法は以下の通りである。あらかじめ所定濃度に調製し，溶解槽で恒温に保った未飽和溶液を冷却し所定過飽和にしたのち，逆円錐下部から流入，上部から抜取り，加温したのら，溶解槽にもどす。容器内の流動，温度が定常に達したの ち，あらかじめ未飽和溶液で洗浄した，粒径 $500 \sim 590 \mu \mathrm{~m}$ の種晶を一定個数（100個），重量を測定して投入し成長させた。1時間後，全結晶を回収し，その質量を測定した。そ の際，結晶個数は増加しなかったことから，本実験条件下では有効な二次核化が起きてい ないと確認した。

種晶として，市䛀品の他に，2稿類の調製結留を用いた。1つは，400～500 $\mu \mathrm{m}$ の市販結晶を容量 200 ml の晶析槽で撹朩（ $\mathrm{n}_{\mathrm{rpm}}=600 \mathrm{~min}^{-1}$ ）下，温度 $\mathrm{T}=25^{\circ} \mathrm{C}$ ，過飽和

濃度 $\triangle \mathrm{C}=0.07 \mathrm{w} 1 \%$ で 8 時間成長させたものであり，いま 1 つは，初期過飽和度 $\sigma=$ 0．05， $\mathrm{n}_{\mathrm{rpm}}=600 \mathrm{~min}^{-1}, ~ \mathrm{~T}=25$ Cで自然発生した核をそのまま成長させたもので，い ずれも乾燥後 $500 \sim 600 \mu \mathrm{~m}$ にふるい分けして種鼠とした。
それらはそれぞれ次のようにSeedI，II，IIIとして用いた。すなわち，市販特級品（Seed I），市販品を成長させた結晶（Seed II），$\quad \mathrm{C}=0.07 \mathrm{w} \%$ 。 2.5 C ， 8 hr ，およびー次核を成長させた結晶（SeedIII）である．．．また，実験条件は以下のようである。晶析温度：$\theta=25 \sim 50{ }^{\circ} \mathrm{C}$ ；過飽和濃度： $\mathrm{A} \mathrm{C}=0.03 \sim 0.2 \mathrm{w} \mathrm{C}^{\circ} \mathrm{C}\left(5.1 \times 10^{-3} \sim 3.4 \times 10^{-2} \mathrm{~mol} / \mathrm{kg}\right.$－ soln）；（C－C $\left.\mathrm{C}_{\mathrm{S}}\right) / \mathrm{C}_{\mathrm{S}}=1.1 \times 10^{-3} \sim 7.6 \times 10^{-3}$ ；液流速 $1.361 / \mathrm{min}(0.4 \sim 2.9 \mathrm{~cm} / \mathrm{sec})$ ，粒子レイ

$5 \cdot 1 \cdot$ b 結晶溶解

実験装置の概要をFig．5－2に示す。

Fig．5－2 Apparatus for dissolution

上辺 40 mm ，下辺 10 mm ，高さ 150 mm ，内容閴 70 ml のガラス製逆円錐型流動層式容器を用い，温度 $22.5 \sim 60{ }^{\circ} \mathrm{C}$ ：未飽和濃度 $\mathrm{Cl}^{\prime}=0.03 \sim 0.14 \mathrm{~g} / 100 \mathrm{~g}-\mathrm{soln}$ ；体積流量 $1.13 \mathrm{l} / \mathrm{min}$ ；種晶（市眅結晶）粒径 $710 \sim 870 \mu \mathrm{~m}$ ：同個数 100 個：溶解洔間 $10 \sim 200$ min，の条件で測定した。結晶溶解速度は，所定時間溶解された後，全結晶を回収し，へ キサン洗净，乾燥後，溶解前後の質量変化を実測した。

$5 \cdot 2$ 実験結果

$5 \cdot 2 \cdot \mathrm{a}$ 結晶成長実験結果の整理法
結晶の見かけの成長速度は，$\quad . C^{\prime}=-$ 定の定常条作ドで，結昴が相似成長するときは，拡散モデルにもとづくEq．5－1で与えられると仮定した。

$$
\begin{equation*}
\mathrm{dm} / \mathrm{d} \theta=\mathrm{k}_{\mathrm{G}} \mathrm{~A}\left(\Delta \mathrm{C}^{\cdot}\right)^{n} \tag{5-1}
\end{equation*}
$$

ここで，mは結晶一個粒子の質量で，回分晶析槽に仕込まれた結晶粒子群の平均値である。 k_{G} は総括結晶成長速度定数， A は結晶 1 個の表面積である。 $\rho \mathrm{c}$ を結晶の密度，$\phi \mathrm{V}$ と $\phi \mathrm{S}$ をそれぞれ体積および面積形状係数，Lを代表径とすると，

$$
\begin{gather*}
\mathrm{m}=\rho_{1} \phi_{\mathrm{v}} \mathrm{~L}^{3} \tag{5-2}\\
\mathrm{~A}=\phi_{\mathrm{s}} \mathrm{~L}^{2}=\rho^{-2 / 3} \phi \mathrm{~m}^{2 / 3} \tag{5-3}\\
\phi=\phi_{s}\left(\phi_{\mathrm{v}}^{-2 / \beta}\right) \tag{5-4}
\end{gather*}
$$

$\triangle \mathrm{C}^{\prime}, ~ \mathrm{k}_{\mathrm{G}}$ 一定を考慮すると，Eq．5－2～Eq．5－4より，

$$
\begin{equation*}
\left(m^{1 / 3}-m_{0}^{1 / 3}\right) / \theta=(1 / 3) k_{\mathrm{c}} \rho_{\mathrm{c}}^{-2 / 3} \phi\left(\Delta C^{\prime}\right)^{n} \tag{5-5}
\end{equation*}
$$

あるいは

$$
\begin{align*}
\left(\mathrm{L}-\mathrm{L}_{0}\right) / \theta & =(1 / 3) \mathrm{k}_{\mathrm{c}} \rho_{\mathrm{c}}^{-1} \phi_{s} \phi_{\mathrm{v}}^{-1}\left(\Delta C^{\prime}\right)^{n} \tag{5-6}\\
& =\rho_{\mathrm{c}}^{-1 / 3} \phi_{\mathrm{v}}^{-1 / 3}\left(\mathrm{~m}^{1 / 3}-m_{0}^{1 / 3}\right) / \theta \tag{5-7}
\end{align*}
$$

ここで， m_{0} は θ（成長時間）$=0$ のときの結間 1 個の質量である。Eq．5－5は結晶の線成長速度の積分式に対応する。

Eq．5－5を用いると $\left(m^{1 / 3}-m_{0}^{1 / 3}\right)$ と θ ，および，$\left(m^{1 / 3}-\mathrm{m}_{0}^{1 / 3}\right) / \theta$ と $\Delta \mathrm{C}^{\prime}$ を両対数点綴する ことによって晶析特性および総括成長速度係数を求めた。

Eq．5－1 は $\triangle \mathrm{L}$ 法則が成立するとした場合に粒径に関係無く適用できる。しかし一般的 には k_{G} はみかけの速度定数で，通常，物質移動抵抗に影響されるため，粒径に依存し， $\triangle \mathbb{L}$ 法則は成立しない。そこで，容器特性についての考察を行う。すなわち，本系の実験条件下では，粒子基準のレイノルズ数 Re_{P} は3～222で，Allenの領域（ $\mathrm{Re} \mathrm{e}_{\mathrm{P}}=1 \sim 500$ ）内 にあるため，粒子の浮遊相対速度（終端速度）u，はEq．5－8で与えられる。

$$
\begin{gather*}
u_{1}=\frac{4}{225}\left\{\frac{\left(\rho_{\mathrm{S}}-\rho_{\mathrm{F}}\right)^{2} \mathrm{~g}^{2}}{\rho_{F} \mu_{\mathrm{F}}}\right\}^{(1 / 3)} \mathrm{L} \tag{5-8}\\
u_{1}[\mathrm{~cm} / \mathrm{sec}], \rho\left[\mathrm{g} / \mathrm{cm}^{3}\right], \mu[\mathrm{g} / \mathrm{cmsec}], \mathrm{g}\left[\mathrm{~cm} / \mathrm{sec}^{2}\right], \mathrm{L}[\mathrm{~cm}]
\end{gather*}
$$

したがって，相対速度は系一定ではLのみの関数で，流量が増加•減少しても粒径Lの粒
関係である（Fig．5－3）－－方，kdは $u^{a} L^{-b}$ に比例するが，固一液流動層では，（ a, b ）と して（0．5，0．5），（0．659，0．34），（0．66，0．34），（0．532，0．468），（0．488，0．512）などが見いだ されており，Eq．5－8の関係を用いると，されており，Eq．5－8の関係を用いると，されて

おり，Eq．5－8の関係を用いると， k_{d} はLに依存しないか，依存してもごくわずかである。以上のことから，本晶析器の特性から，結晶が相似系として成長する限り，$\triangle \mathrm{L}$ 則が成立 すると考えてよい。

Fig．5－3 Conditions in vessel
$5 \cdot 2 \cdot b$ 成長実験結果
Fig．5－4に予め成長させた市眅結晶を種晶とした場合の，単位時間当りの成長量の経時変化を示す。また（ $m^{1 / 3}-\mathrm{m}_{0}^{1 / 3}$ ）で示した成長量の経時変化もFig．5－5に示す。実験条件は， $25^{\circ} \mathrm{C}$ ，$\triangle \mathrm{C}=0.07 \mathrm{wt} \%$ ，種々のバッヂで調製した種晶Seed II，である。これ らより，同一の調製法で得られた種晶を用いたにもかかわらず，成長速度（ $\mathrm{m}^{1 / 3}-\mathrm{m}_{0}^{1 / 3}$ ） －は異なること，そして，同…バッチで得られた棛思についてみると，成長時間ととも に成長速度は一定値に減少していく傾向が判る。Fig．5－6は成長しつつある結晶の外観を光学顕微鏡で観察した結果であり，結晶表面は成長時間とともに平滑になっていくことを示している。

Fig. 5-4 Time course of growth amount per unit time with different seeds.
Temp. $=25^{\circ} \mathrm{C}, \Delta \mathrm{C}=0.07 \mathrm{wt} \%$

Fig. 5-5 Time course of growth amount, at $25^{\circ} \mathrm{C}, \Delta \mathrm{C}=0.07 \mathrm{wt} \%$

Fig．5－6 Photograps of appearance of growing crystals

この図の結果およびFig．5－5のデータから，種晶表面の荒れは最初の 10 min 及至 20 minの成長期に平滑となり，それ以後は，調製バッチの如何にかかわらず，どのような種晶も同一の速度（Fig．5－5の直線部分の勾配）で成長するものと考えられる。Fig．5－5で は，6種のうち5種がほぼ同一の勾配をもつ直線関係を与えたので，その平均勾配値を $25^{\circ} \mathrm{C}, ~ \triangle \mathrm{C}=0.07 \mathrm{wt} \%$ での成長速度としたSeed IについてもFig．5－5と類似の挙動が得 られたので，以下の成長と溶解実験には市眅品（SeedI）を用いた。

以上の手法を用いて測定した，各温度（ $\theta=25 \sim 50$（ ））における，成長速度：（ $\mathrm{m}^{1 / 3}$ $-\mathrm{m}_{0}^{1 / 3)}$（ θ と過飽和濃度 C Cの関係をFig．5－7に示す。この図より成長速度は C Cに比例すること，したがって，n 프1 であることが判った。このことは同時に，表面集積反応も $\triangle C$ に一次（r－1）とみなし得ると考えた。

Fig．5－7の各直線の，$\Delta C=1$ における切片から，総括成長速度係数 $\mathrm{k}_{\mathrm{G}}\left[\mathrm{g} /\left(\mathrm{cm}^{2} \cdot \mathrm{~min}\right.\right.$ 。 $w t \%)]$（＝切片x3 $\rho_{c}{ }^{2 / 3} \phi^{-1}$ ）および総括線成長速度定数 k_{G} 。［mm／（h•wt\％）］（＝ $\mathrm{k}_{\mathrm{G}} \times 200 \rho_{\mathrm{c}}{ }^{-1} \phi_{\mathrm{S}} \phi_{\mathrm{V}}{ }^{-1}$ ）をそれぞれ求めた。結果をTable 5－1に示す。

Fig. 5-7 Growth rate vs. $\Delta \mathrm{C}$
Table 5-1 Growth rate constants

¢โY¢	kex $10^{3}{ }^{3}=1$	Kc.al	km: ${ }^{\text {m }}$	\9\%\%!	\!\%!
2.	1.03	0.575	3.46	0.681	16.6
35	3.13	1.74	4.54	2.82	38.0
4S	6.35	3.53	5.81	9.00	60.8
50	7.52	4.18	6.61	11.37	63.2
60'4		7.27	8.33	56.1	87.2
70\% ${ }^{\text {\% }}$		9.73	10.36	161.3	94.0
80*5		12.38	12.73	455.2	97.3
85 ${ }^{4}$		13.78	14.05	723.8	98.1

*1) $\left.\left[\mathrm{g} / \mathrm{cm}^{2} \cdot \mathrm{~min} \cdot \mathrm{wt} \%\right], \quad * 2\right)[\mathrm{mm} / \mathrm{h} \cdot \mathrm{w}(\%], * 3)[\%]$,
*4) calculated values by Eqs. (5-15), (5-16) and (5-18), except k_{m} at $60^{\circ} \mathrm{C}$

ここで，塩化ナトリウム結晶の物性値として次の値を用いた；$\rho_{\mathrm{c}}=2.16 \mathrm{~g} / \mathrm{cm}^{3}, ~ \phi_{\mathrm{s}}=6$ ， $\phi_{\mathrm{V}}=1, ~ \phi=6$ 。また， $\mathrm{k}_{\mathrm{G}}{ }^{\prime}$ は次式で定義される定数である。

$$
\begin{equation*}
\mathrm{dL} / \mathrm{dt}=\mathrm{k}_{\mathrm{c}} \Delta \mathrm{C} \tag{5-9}
\end{equation*}
$$

5.2 •C 溶解実験結果と考察

Fig．5－8に，溶解実験結果より得られた各温度における $\left(\mathrm{m}_{0}{ }^{1 / 3}-\mathrm{m}^{1 / 3}\right) / \theta$ と C C＇の関係 を示す。この図より溶解速度はこしいこついて一次であることが判る。したがって，溶解速度はEq．5－5およびEq．5－6（いずれもn＝1）ならびにEq．5－9で， $\mathrm{k}_{\mathrm{G}} \rightarrow \mathrm{k}_{\mathrm{dis}}$ ， $\mathrm{k}_{\mathrm{G}}{ }^{\prime} \rightarrow$ $\mathrm{k}_{\mathrm{dis}}{ }^{\prime}$ ，$\triangle \mathrm{C} \rightarrow-\triangle \mathrm{C}^{\prime}$ に置き換えた諸式で表せる。
この図より求めた溶解速度定数 $\mathrm{k}_{\mathrm{dis}}\left[\mathrm{g} /\left(\mathrm{cm}^{2} \mathrm{minwt} \%\right)\right]$ のアンレニウスプロットを Fig ．5－9に示す。Fig．5－9より，溶解の活性化エネルギーとして $20.72[\mathrm{~kJ} / \mathrm{mol}(4.95 \mathrm{kcal} / \mathrm{mol})]$ を得，線溶解度式として次式が得られた。

$$
\begin{array}{r}
\left.-\mathrm{dL} / \mathrm{dt}=1.477 \times 10^{4} \exp (-2492 / \mathrm{T}) \Delta \mathrm{C} \quad \mid \mathrm{mm} / \mathrm{h}\right\rceil \\
\mathrm{k}_{\mathrm{dis}}^{\prime}=1.477 \times 10^{4} \exp (-2492 / \mathrm{T})\lceil\mathrm{mm} / \mathrm{hwt} \%\rceil \tag{5-11}
\end{array}
$$

Fig．5－8 Dissolution rate vs．$\Delta \mathrm{C}$

Fig．5－9 Arrhenius plots of $k_{d i s}$
$\mathrm{k}_{\mathrm{dis}}$ ，線溶解速度 $\mathrm{k}_{\mathrm{dis}}{ }^{\text {• }}[\mathrm{mm} /(\mathrm{h} \cdot \mathrm{w} \mathrm{m} \%)]$ および物質移動係数 $\mathrm{K}_{\mathrm{d}}[\mathrm{cm} / \mathrm{min}](=$ $\mathrm{k}_{\mathrm{dis}} \mathrm{x} 100 / \rho_{\mathrm{F}} \rho_{\mathrm{F}}$ ：溶液密度）をTable 5－2に示す。
Table 5－2 Values of $\mathrm{k}_{\mathrm{dis}}, \mathrm{k}_{\mathrm{dis}}$＇and k_{d}

O						
1	18	25	35	40	50	60
M $\mathrm{il} \times 10^{3+1)}$		6.23	8.17	9.30	11.9	15.0
		3.46	4.54	5.16	6.61	8.33
个．3	（0．42）	0.52	0.69	0.78	1.00	1.27
	0.51	0.60	0.74	0.82	0.99	1.19
	（0．44）	0.50		0.62	0.79	0.94

＊1）$\left[\mathrm{g} / \mathrm{cm}^{2} \cdot \min \cdot \mathrm{w} 1 \%\right]$ ，${ }^{* 2)}[\mathrm{mm} / \mathrm{h} \cdot \mathrm{w} \mathrm{l} \%]$ ；defined by，$-\mathrm{dL} / \mathrm{dl}=\mathrm{k}_{\mathrm{dis}}{ }^{\prime} \Delta \mathrm{C}^{\prime}$
＊3）［cm／min］，＊4）［cm／min］；estimated by Eq．（5－12），＊5）［cm／min］；data of Scruton，et al．（1981）．
Parentheses mean calculated values．
 と見積られた。Table5－2には比較のためにScrutonら＂の測定値およびRanz－Marshall式 5－12による推定値をも表示した。

$$
\begin{gather*}
\mathrm{Sh}=2.0+\mathrm{bSc}^{1 / \beta} \mathrm{Re}_{\mathrm{p}}^{1 / 2} \tag{5-12}\\
\mathrm{Sh}=\mathrm{k}_{\mathrm{d}} \mathrm{~L} / \mathrm{D}: \text { : ャーウド数 } \\
\mathrm{Sc}=\mu_{\mathrm{F}} / \rho_{\mathrm{F}} \mathrm{D} \quad: \text { シュミット数 } \\
\operatorname{Re}_{\cdot \mathrm{p}}=\rho_{\mathrm{F}} \mathrm{Lu} / \mu_{\mathrm{F}} \quad: レ イ ノ ル ス ゙, ~
\end{gather*}
$$

Eq．5－12の定数b［－］は0．6～1．0の範囲にあることが知られている。（例えば；0．76²， $0.92^{1 〕}$ ）上記の推定に際して次の値および文献値を用いた＇＂。 $\mathrm{b}=0.8: \mathrm{L}=0.06 \mathrm{~cm}$ ；

$$
\begin{gather*}
\left.\rho_{\mathrm{F}, \mathrm{~S}}: \text { Eq. 3-1 とEq. 3-2 (ただし, } \mathrm{C}=\mathrm{C}_{\mathrm{S}}\right): \text { および } \\
\mu_{\mathrm{F}}=2.87752 \times 10^{-3}-5.7703 \times 10^{-5} \theta+5.3523 \times 10^{-7} \theta^{2}-1.8456 \times 10^{-9} \theta^{3} \tag{5-13}\\
\mathrm{D}=1.3562 \times 10^{-6} \exp (-2027 / \mathrm{T}) \tag{5-14}
\end{gather*}
$$

なお， $18{ }^{\circ} \mathrm{C}$ の K_{d} 値としてWilhelm³）らは0．5 cm／minを得ている。

$5 \cdot 3$ 考察

$5 \cdot 3 \cdot \mathrm{a}$ 結晶成長過程に与える物質移動抵抗
$5 \cdot 2 \cdot b て ゙ は, ~$ 総括成長次数 n および表面反応次数r r は 1 に等しいことを見いだした。そ れゆえ，総括成長抵抗はよく知られている関係式，例えば線成長速度単位で表すと次式で与えられる。

$$
\begin{gather*}
1 / \mathrm{k}_{\mathrm{G}}=1 / \mathrm{k}_{\mathrm{g}}+1 / \mathrm{k}_{\mathrm{m}}^{\prime} \tag{5-15}\\
\mathrm{k}_{\mathrm{dis}}=1.477 \times 10^{4} \exp (-2492 / \mathrm{T}) \quad\lceil\mathrm{mm} / \mathrm{hr} / \mathrm{wt} \%\rceil \tag{5-16}
\end{gather*}
$$

ここで， k_{g} ’，および k m ・はそれぞれ表面集積反応および物質移動の速度定数
 5－16＇および5．2．で得た k_{G} 値（Table 5－1）を用いると， k_{g}＇および次式で定義した総括抵抗への物質移動抵抗への寄与率ら，

$$
\begin{equation*}
\zeta=\left(1 / k_{m}^{\prime}\right) /\left(1 / k_{G_{i}}\right) \tag{5-17}
\end{equation*}
$$

を求めることができる。その結果をTable 5－1の点線の上部に表示した。Fig．5－10はkg，， k_{m} ’（＝ $\mathrm{k}_{\mathrm{dis}}$ ））および k_{G} ・のアルレニウス・ブロットを示したものである。その結果，表面集積過程の活性化エネルギーとして $102.3 \mathrm{~kJ} / \mathrm{mol} ~(24.4 \mathrm{kcal} / \mathrm{mol})$ を，また k g ， の式表示としてEq．5－18を得た。

$$
\begin{equation*}
\mathrm{k}_{\mathrm{g}}^{\prime}=5.952 \times 10^{7} \exp (-12300 / \mathrm{T}) \quad[\mathrm{mm} / \mathrm{hr} / \mathrm{wt} \%] \tag{5-18}
\end{equation*}
$$

Table 5－1の点線下部の备速度定数およびら値は計算値である。一般に，物質移動過程 と反応過程よりなる遂次過程の速度は十分な高温域では前者によって，十分な低温域では後者によって律速される。Table5－1の 値は，塩化ナトリウムの結晶の成長は両過程に よって影響される中間域が予想外に広い温度域にわたっていることを示している。

Fig．5－10 Arrhrenius plots of $\mathrm{k}_{\mathrm{G}}{ }^{\prime}, \mathrm{k}_{\mathrm{g}}{ }^{\prime}$ ，and $\mathrm{k}_{\mathrm{m}}{ }^{\prime}$
$5 \cdot 3 \cdot \mathrm{~b}$ 晶析速度データに基づく晶析器効率についての倹討
前節までに得た速度デ・タ，Eq．5－15，Eq．5－16とEq．5－18および2•2•b•iv）で示した Fig．2－29を用い，マイルドな流動条件下，すなわち，結晶一結晶間および結晶器器壁間 の衝突を無視できる，したがって二次核発生に由来する凝集現象を無視できる理想的な流動条件下での，理想分級層型晶析器の効率を試みた。その 1 例を以下に示す。

仮定：$\theta=85{ }^{\circ} \mathrm{C}, ~ \mathrm{dL} / \mathrm{dt}=13.8 \triangle \mathrm{C} \mathrm{mm} / \mathrm{hr}: \Delta \mathrm{C}_{\mathrm{av}} .=0.2 \mathrm{w} \%: \mathrm{r}_{\mathrm{c}}=2.16 \times 10^{3}$ $\mathrm{kg} / \mathrm{m}^{3} ; \mathrm{f}_{\mathrm{V}}=1$ ：懸濁密度 $(1-\varepsilon)=0.017 \mathrm{~m}^{3} / \mathrm{m}^{3}$ ；生産速度 $\mathrm{P}=(2 / 9) \mathrm{r}_{\mathrm{c}} \mathrm{k}_{\mathrm{V}} \mathrm{FV} \mathrm{V}^{\prime} \mathrm{L}_{\mathrm{m}}{ }^{3}$（完全混合槽仮定： $\mathrm{F}_{\mathrm{V}}{ }^{\prime}=$ 核化速度 $\left[1 / \mathrm{m}^{3} \cdot \mathrm{hr}\right], ~ \mathrm{~L}_{\mathrm{m}}=$ 代表粒径）。ここで，（ $1-\varepsilon$ ）は結晶懸濁域高さを 10 mm と仮定して見積った。

付帯仮定： $\mathrm{L}_{\mathrm{m}}=10^{-3} \mathrm{~m}$ ：Rosin－Rammler線図上の数平均分布直線の勾配 $\geqq 5$ ；
線図より： $\mathrm{P} / \mathrm{r}_{\mathrm{c}} \cdot \mathrm{V}=0.156 \mathrm{~m}^{3} / \mathrm{m}^{3} \cdot \mathrm{hr}: \mathrm{F}_{\mathrm{v}}{ }^{\prime} \mathrm{r}_{\mathrm{V}}=1.75 \times 10^{-9} / \mathrm{m}^{3} \cdot \mathrm{hr}$
結果：$P=840 \mathrm{~kg} / \mathrm{hr}, ~ \mathrm{~V}^{\prime}=2.49 \mathrm{~m}^{3}$ ，効率 $=337 \mathrm{~kg} / \mathrm{m}^{3} \cdot \mathrm{hr}$
CEC式Krysial Oslo型実装置を用いた青川のデータによると，$\theta=87 \%, ~ \Delta C_{i n}=0.35$ $\mathrm{wt} \%$ ，$\Delta \mathrm{C}_{\text {out }}=0.11 \mathrm{w} \% ~\left(\Delta \mathrm{C}_{\mathrm{av}}\right.$ 。 $\left.0.23 \mathrm{wt} \%\right)$ ， $\mathrm{V}=6.8 \mathrm{~m}^{3}$ の条件で， $\mathrm{P}=2170$ $\mathrm{kg} / \mathrm{hr}, ~ \mathrm{~L}_{\mathrm{m}}=1.16 \times 10^{-3} \mathrm{~m}$（個数基準）， $\mathrm{R} \cdots \mathrm{R}$ 線図状勾配7． 26^{5} ）が得られている。した がって，効率は $319 \mathrm{~kg} / \mathrm{hr}^{\circ} \mathrm{m}^{3}$ である。この値と比較すると，上記の推算値は比現実的な

値ではないと考えられる。
$5 \cdot 3 \cdot \mathrm{C}$ 線図による晶析器の効率の推算
$5 \cdot 2$ で，成長速度は 25% で既に 10% 程度の物質移動抵抗に影響されていることが推算さ れた。この抵抗の寄与は温度」界とともに大きくなると考えられるが，特に後者の温度依存性が過大で，現在検討中である。ここでは，通常の無機塩の成長速度の例にならって，実操業での $70 \sim 80^{\circ} \mathrm{C}$ という高温度域では物質移動（拡散）律速域にあると仮定して成長速度を推算しマイルドな流動状態でのモデル装趹の思所器劫率を設訃線岡を用いて推算す ることを試みた。
（1）成長速度（70～～80で）
実操業での成長速度の予想値は， $25^{\circ} \mathrm{C}$ での $\mathrm{k}_{\mathrm{dis}}{ }^{\prime}=4.64 \mathrm{~mm} / \mathrm{hr}$ を考慮して，次式で与 えられるとした。

$$
\begin{align*}
& -\frac{\mathrm{dL}}{\mathrm{dt}}=3.91 \times 10^{3} \exp \left(-\frac{2000}{\mathrm{~T}}\right) \Delta \mathrm{C} \tag{5-1.9}\\
& \frac{\mathrm{dL}}{\mathrm{dt}}[\mathrm{~mm} / \mathrm{hr}], \mathrm{T}[\mathrm{~K}], \Delta \mathrm{C}[\mathrm{~g} / 100 \mathrm{~g} \text {-soln }]
\end{align*}
$$

なお，物質移動係数の温度依存度を，通常の，約 $4 \mathrm{kcal} / \mathrm{mol}$ とした。 Table 5－3に予想値 を示す。

Table 5－3 Predicted value of $\mathrm{dL} / \mathrm{dt}[\mathrm{mm} / \mathrm{h}]$

Temp．	4 1／ 10	$4 \mathrm{C}=0.1$	0.2	0.3	0.4	0．5．
70\％	$11.2 \Delta \mathrm{C}$	1.12	2.24	3.36	4.48	5.60
75\％．	$12.2 \Delta C$	1.22	2.44	3.66	4.88	6.10
80\％．	$13.2 \Delta C$	1.32	2.64	3.96	5.28	6.60
85 \％	14．3 Δ C	1.43	2.86	4.29	5.72	7.15

（2）$(1-\varepsilon)$

Eq．5－19は逆円錐型流動層式晶所器でのマイルドな流動状態下での予想値である。全結晶がFig．5－1の晶析器全域に浮遊していると仮定すると，その懸濁率（ $1-\overline{-}-\varepsilon$ ）は高々 0.024% である。しかし，実際には，結晶はある特定の逆円錐位置に滞る。観察と計算か ら，底辺より $7 \sim 17 \mathrm{~mm}$ の円錐台形内にあるとすると，その容積 $V=3.1 \mathrm{ml}$ ，結晶は平均 $550 \mu \mathrm{~m}$ から， $1050 \mu \mathrm{~m}$ まで成長するとすると全結晶の経時的平均容積 0.051 ml ，したが って平均の（ $1-\varepsilon$ ）値は 0.017 と見積れる
（3）線図による倹討
以上の値を用い，線図によるマイルドな流動条件下における晶析器効率を推算した。た

だし，測定温度 $=85$ 亿，$\therefore C=0.2 \mathrm{~g} / 100 \mathrm{~g}-\mathrm{soln}, ~ \rho_{\mathrm{c}}=2.16 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}, ~ \mathrm{f}_{\mathrm{V}}=1$ ，また，生産速度 $\mathrm{P}=(2 / 9) \rho \mathrm{c}_{\mathrm{v}} \mathrm{F}_{\mathrm{v}}{ }^{\prime} \mathrm{I}_{\mathrm{m}}{ }^{3}$［質量／時間］（完全混合層）の関係を用いた。

$$
\begin{aligned}
& \text { Case A: } 1 \mathrm{~m}=500 \mu \mathrm{~m}=5 \times 10^{-4} \mathrm{~m}, ~ \mathrm{~m}=1 \\
& \mathrm{P} \quad \rho_{\mathrm{c}} \mathrm{~V}=0.227\left[\mathrm{hr}^{-1}\right], ~ \mathrm{~F}_{\mathrm{V}}{ }^{\prime} \mathrm{r}_{\mathrm{V}} 8 \times 10^{9}\left[\mathrm{~m}^{-3} \mathrm{hr}^{-1}\right] \\
& \text { これより, } P=479[\mathrm{~kg} / \mathrm{hr}], ~ V=0.98\left(\mathrm{~m}^{3}\right] \\
& \text { Case B: } 1 \mathrm{~m}=1000 \mu \mathrm{~m}=10^{-3} \mathrm{~m}, ~ \mathrm{~m} \quad 1 \\
& \text { P } \left.\quad \rho_{c} V \cdot 0.11 .7 \mid \mathrm{hr}^{-1}\right\rfloor, ~ F_{v} \mathrm{r}_{\mathrm{V}} \cdot 6.5 \times 10^{8}\left|\mathrm{~m}^{-3} \mathrm{hr}^{-1}\right| \\
& \text { これより, } \mathrm{P} \quad 311|\mathrm{~kg} / \mathrm{hr}|, ~ V \quad 1.23\left|\mathrm{~m}^{3}\right| \\
& \text { Case C: } 1 \mathrm{~m}=1000 \mu \mathrm{~m} \cdot 10^{-3} \mathrm{~m}, \mathrm{~m} \cdot 5 \\
& \mathrm{P}, \rho_{\mathrm{c}} \mathrm{~V}=0.163\left[\mathrm{hr}^{-1}\right], ~ \mathrm{~F} \mathrm{v}^{\prime} \mathrm{r}_{\mathrm{v}}=1.85 \times 10^{9}\left[\mathrm{~m}^{-3} \mathrm{hr}^{-1}\right] \\
& \text { これより, } \mathrm{P}=888[\mathrm{~kg} / \mathrm{hr}], ~ V=2.52\left[\mathrm{~m}^{3}\right]
\end{aligned}
$$

REFERENCES

1）Scruton，A and Grootscholten，P．A．M．，Trans．Inst．Chem．Eng．，59， 238 （1981）
2）斉藤譲，中野健次，原納淑郎，井本立也，日本化学会誌，417（1975）
3）Wilhelm，R．H．，L．H．Conkin and T．C．Saucr，Ind．Eng．Chem．，33，453（1941）
4））Harano，Y．，S．Sudo and Y．Aoyama，ACS Symp．Series，438， 175 （1990）

6 撹拌槽型晶析装置における塩化ナトリウムの晶析速度

6．1 一次核発生速度
回分式完全摬拌槽型晶析器を用いて目視による街ち時間法で…次核発生を測定した。
実験条件は，温度 25 亿，撹扯速度 $600 \mathrm{~min}^{-1}$ ，鼠析器容積 400 ml である。得られた実測値を待ち時間 θ［min］vs．（logS $)^{-2}$ で整理した…結果をFig．6－1に示す。…次核化に必要 な過飽和度が顿めて小さいこと，撹扑強度が過人であったことなどから，ここに示すデ…

Fig．6－1 Primary nucleation ：waiting time method
ろ0． $5 \mathrm{erg} / \mathrm{cm}^{2}$（結晶のモル容積 $27.06 \mathrm{~cm}^{3}$ として）の値を得た。溶解度から見積った表面エネルギー $15.5 \mathrm{erg} / \mathrm{cm}^{2}$ と比較して過小であるが，経験的に，通常の無機塩と較べて極 めて核化しやすいことの 1 つの尺度となると考える。

6．2 二次核発生速度

$6 \cdot 2 \cdot a$ 実験

$6 \cdot 2 \cdot a \cdot i$ i）二次核発生速度の測定

連続的に過飽和水溶液が供給されている撹扯悱に，所両の㑬数の稿量を投入すると，そ の瞬間から二次核の発生が始去る。 ．次核は，流州淮とともに排卅される。排出された…

Fig．6－2に実験装置を小す，溶液は，メンブランクイルタ‥ $0.45 \mu \mathrm{~m}) 3$ で濾過され， タンク1から所定の過纷却温度に保たれた撹排槽4に偩紛した。浴波の供給を開始して

Fig．6－2 Experimental set－up
温度が一定に落ち着いたのを確認した後，種晶を 10 倜あるいは 100 個摬抄槽に投入した。種晶は槽内に留まり，撹抄翼および器壁，バッフルと衝突を繰り返し，その衝撃より一次核が発生する。発生した…次核は，肉眼では観祭できないが，撹拌槽から溶液と共に排出 され，レーザーカウンタ…6に導き，このカウンタ で…次核の累積排出偑数を数えた。

Fig．6－3には，晶析器および撹抖翼を示す，楽所器は，溶液体積 $12.5 \mathrm{~cm}^{3}$ のガラス製擋拌槽で，ジャケットに冷却水を流し一定泠却度が得られるようになっている。槽壁には等間隔にバッフルを 1 枚取り付けた
材質の影響を調べたい

Fig．6－3 Crystallizer and impeller
験温度を変化させて実験した。溶液作成に用いた塩化ナトリウムは関東化学（株）製の 1級試薬である。溶液は次のようにして作成した。．．過剩の程化ナトリウムを蒸留水に加え，所定の温度で2 hr以上擋拌しその温度における平衡濃度の溶液を作り，その上澄み液を試料溶液とした。溶液澧度わよよび過飽和度は溶解度デ－タ！から計算した。（計算にはこ のように文献値を使用したが，溶解平衡が達成されていることは，上澄み液の濃度を重量法で求め確認した。）種晶にも同じく関東化学（株）1 級試楽を使用したが，これはふる いで整粒した結晶（約 1 mm ）を用いた．．．種品は特に前処理をしないで摬拌慒に投入した。
$6 \cdot 2 \cdot \mathrm{a} \cdot \mathrm{ii}$ ）檔抖翼と粒子の衝笑に対するスケールアッフ実験
（1）擋抖慒および撹汼買
 ルが取り付けてある，擋拌橧のサイズDは，Table 6－1に示したように，126mmおよび 400 mm の 2 通りである。また，撹汼翼はステンレス製のディスクタービン型（Fig．6－4参照）で，4枚羽根および 6 敀羽根の二㮔頻を用いた。表中の D_{b} は，タービン羽根（正
的相似であることを意味している。この 2 つは， 6 收羽恨タービンであったが，その他の

2 つ（ $\mathrm{D}_{\mathrm{b}}=50$ および 100 mm ）の場合は， 1 枚妆根で先の 2 つとはけ法比も幾何学的相似 からは外れている：なお，液面の高さは，撹抄構の值径Dに等しくした，また，撹找翼は その高さ h_{i}（撹抖槽底面からディスク面までの高さ）＝D／4になるように取り付けた。

Fig．6－4 Stirred tank used for scale－up experiments of collision and contact nucleation

Table 6－1 Dimension of stirred tanks and impellers

D M mil	dimme	Qumm1
126	42	$9^{\text {六 }}$
400	136	30%
400	160	50
400	260	100

$\mathrm{d}_{\mathrm{p}}=4 \mathrm{~mm}$（polyethylene）
$\rho_{p}=1.22 \mathrm{~g} / \mathrm{CC}$
$\boldsymbol{\sim}$ Geometically similar
（2）クレョン法による衝突頻度の測定
㨘拌翼（タービン羽根）と粒子の衝突は，Takahashiら＂の閵発したクレョン法を用い た。予め両面に厚くクレヨンを淕布したタービン妆根を用いて一定時間粒子圎濁液を撹排 すると，懸濁粒子が衝突する度にクレヨン膜に衝突痕がつく。そこでその衝突痕の数を実験後に調べると衝实頻度がわかる。この方法は，単純であるが結果は再現性もあり，また，衝突場所もわかるという利点がある。実験は，40＂C（この程度の温度になるとクレョン膜が柔らかくなり，衝宊痕が大きくなり数え易い）の水に，直径 4 mm のボリエチレン粒子（密度 $=1.22 \mathrm{~g} / \mathrm{cm}^{3}$ ）を懸濁させて行った。ホリエチレン粒子の写真をFig．6－5に示し た。なお，クレヨンはターービン羽根（4あるいはら收のゆの一枚）の雨面に塗布し，表お よび裏側の衝实が調べられるようにした。

Fig．6－5 Polyethylene particles used for collision experiments（ 1 division of scale $=1 \mathrm{~mm}$ ）

（3）二次核発生に対するスケールアッブ実験

二次核発生の実験も，先に衝实実験で使用したものと同じ滰汼槽で行った。哯拌翼も同 じくステンレス製のディスクタ・ビン刑を使用した，ただし，この核発生の実験では先の衝突の実験で用いた哯抖槽の他に，D $=6.3 \mathrm{~mm}$ ， $\mathrm{d}_{\mathrm{i}} \mathrm{F} 31 \mathrm{~mm}, ~ \mathrm{D}_{\mathrm{b}}=4.5 \mathrm{~mm}$ の檔抖層も用いた。撹拌羽根の取り付け位置は先の衝突の実験の場合と同じ（ $\mathrm{h}_{\mathrm{i}}=4 / \mathrm{D}$ ）である

先ず， $43{ }^{\circ} \mathrm{C}$ 飽和のカリミョウバン水溶液を擋排傮にとり，所定の㯒排速度で擋䢁しな がらこれを $40^{\circ} \mathrm{C}$ まで泠却する，このとき，烝発を防ぐため液面にへキサンを流しその液膜を形成させておいた。温度が 40 そに楁ち着いたところで， 100 個の種晶（ふるいで整粒 した市眅の試薬結晶，粒子径約1mm）を投人した，種思は，投入百前に蒸留水で洗い， その表面に付着した微結晶を除去した。種晶を投入した時点から，二次核の懸濁した溶液 を経時的に（ 5 分おきに） $5 \mathrm{~cm}^{3}$ ずつサンブリングし，その中の二次核の数を数えた。二次核は，サンブリング時には微小でそのままでは数えにくいので，撹抖槽と同じ温度に保持して成長させてからその数を数えた。

$6 \cdot 2 \cdot b$ 実験結果の整理

いま，晶析器に種晶を投入しその瞬間から種品1個いけ队［sec ${ }^{-1} \mid$ の一定速度で核発生
化は，Eq．6－1で与えられる

$$
\begin{equation*}
N=n_{i} \beta 0+n_{i}, \beta \tau[\exp (-0 / \tau)-1] \tag{6-1}
\end{equation*}
$$

ここに，θ は種晶投入の僢間からの経過洔間，ては溶液（および－－次核）の平均滞留時

間， n_{s} は投入した結晶の個数である Fig．6－6にト式を模式的に示した。図から， 3τ 程度までは非定常項 $\mathrm{n}_{\mathrm{s}} \beta \tau[\exp (-\theta / \tau)-1]$ の影響が現れているが，それ以降の N の増加は

Fig．6－6 Cumulative number N versus time
直線的であり，その傾きから㤥発生速度々を求めた，実際のデータ処理においては，6 $\tau(=900 \mathrm{sec})$ 以降のデータを用いて，核発生速度を算出したいなお，定常（steady state） と言う意味で， 6τ 以降の昭閴個数を N_{s} ，$\|$ 年間を $0_{\mathrm{s}} と し た 。 ~ \mathrm{~N}_{\mathrm{s}}$ と 0_{s} の関係は，次式で与 えられる。

$$
\begin{equation*}
N_{s}=n_{s} \beta 0_{s} \tag{6-2}
\end{equation*}
$$

$6 \cdot 2 \cdot \mathrm{C}$ 実験結果および考察

$6 \cdot 2 \cdot \mathrm{C} \cdot \mathrm{i}$ ）二次核のSEM写真

Fig．6－7に二次核のSEM年真を正す。ここで小した－次核の将は約 $10 \mu \mathrm{~m}$ であり， その形状は多様で，きれいな立方体のもの，種結品の破片とおぼしきもの，さらには凝集体も存在している。但し，このこ次核は，滰汼橧（完全混合橧）から排出されたものであ るから，必ずしも発生淔後のものばかりでなく，平均的には，符次核の寸法はこれより小 さいと考えられる。

Fig．6－7 Photograph of secondary nuclei
$.6 \cdot 2 \cdot \mathrm{C} \cdot \mathrm{ii})$ 二次核累積個数 N の経封変化
二次核の累積個数Nの経時変化をFig．6－8およびFig．6－9に示す。過泠却度の低い （Fig．6－8）場合，累積個数 Nは，初期に比較的急激に増加しその後徐々に增加の度合は減少していき，全体的には上に凸の吅線となった 末た，二次核数そのものは，（Fig． 6－9の場合と比較して）かなり少ない。Fig．6－9は，過椧却度が比較的高い場合であり， この場合は初期の挙動は先のFig．6－8の場分と問じであるが，その後は阿び増加率が増え始め，曲線は立ち上がってくる．．なお，過冾帠度の高いFig．6－9の場合はその增加にとも なって二次核数Nの絶対数も増えたが，過冷却度の低いFig．6－8の場合は，その傾向が逆転することもあった

Fig. 6-8 Cumulative number of nuclei of sodium chloride versus time at lower supercoolings

Fig. 6-9 Cumulative number of nuclei of sodium chloride versus time at higher supercoolings
$6 \cdot 2 \cdot \mathrm{C} \cdot \mathrm{iii})$ 二次核発生速度 β
β に対する種々の因子の影響を以下に述べる
（1）撹拌翼材質の影響
二次核発生速度々に対する摚扑翼㤔質の影響（Fig．6－10）は，顕著ではないが，低過飽
製の場合に比較して，㤥発生速度が少し低かった

Fig．6－10 Secondary nucleation rate per seed crystal versus supersaturation
（2）擋抖翼形状の影響
形状の影響は，ステンレス製擋汼冀についてのみ倹討した。Fig．6－11に，その結果を示す。タービン型檔抖翼に比較してブロベラ型の場合は，全体的にßは小さくなった。し かし，高温（といっても最高60てであるが）では，その差はなくなっている。

Fig．6－11 Secondary nucleation rate versus supersaturation at different temperatures
（3）種晶数の影響
種晶数を10，100，1000と変化させて， $\begin{gathered}\text { さの効果を35 } 35 \text { において調べた。ステンレス }\end{gathered}$製タービン型撹划翼の場介，稞昆数の增大にしたがって及は減少した，ブロペラ型撹㧔翼 の場合は，はつきりした傾问が見られなかった
$6 \cdot 2 \cdot \mathrm{~d}$ 賏濁粒子の撹扯翼に対する衝灾
 て検討する。
$6 \cdot 2 \cdot d \cdot i)$ 衝突痕
Fig．6－12に撹抖翼上の衝突痕の㝍真を示す この畄は $\mathrm{D}_{\mathrm{b}}=9 \mathrm{~mm}$ の場合で，タービン羽根全面の衝突である。このような衝实痕を数えて衝实頻度を求めた。なわ，小さい羽根の場合は，羽根全而に衝宊が起こつていたが，人きな（ $\mathrm{D}_{\mathrm{h}}=100 \mathrm{~mm}$ ）場合は，羽根の巾央部 にはほとんど衝実せず，淵の部分のみに衝熒していた…粒子が流れに乘って流れ，衝实が起こりにくくなっている様子がわかる。

$\mathrm{Db}=9 \mathrm{~mm}$

Fig．6－12 Pictures of scratches on the crayon film on turbine blades
衝突は，羽根前面のみでなく裏側にも起こったが，襄面での衝突は大きな羽根の場合も中央部に起こり，淵の部分にはほとんど起こらなかった。裏面の衝実は，羽根後方に生ず る渦によって起こっていることが同われる
$6 \cdot 2 \cdot \mathrm{~d} \cdot \mathrm{ii}$ ）衝突効率とストーークス数の関係（衝突頻度に対するスケールアッブの効果）
衝实実験の結果を衝灾効率 η とストークス数 S_{1} を用いて整理した。ここで用いた η と S_{1} の定義は次の通りである．．
関係に静止していると仮定されるとき回転する羽根に衝乲する頖度で，㦘濁密度に羽根の掃引する単位時間当りの体積を掛けて求められる）に対する実際の衝突頻度の割合と定義 した。この定義は，集塵の分野における衝突効率いである

一方，ストークス数 S_{t} は，流体中の粒子の運動を規定する無次元バラメーターシで，次式で定義した。

$$
\begin{equation*}
S_{\mathrm{t}}=\left(\rho_{\mathrm{p}}-\rho_{\mathrm{f}}\right) \alpha^{2} u /\left(9 \mu \mathrm{D}_{\mathrm{t}}\right) \tag{6-3}
\end{equation*}
$$

ここに，ρ_{p} ，ρ_{f} はそれぞれ粘子および流体の密度， d_{p} は粘子直径（球形），uは千 ップ速度，μ は流体粘度， D_{b} はターービン羽根サイズである。この定義は，流れの中に置 かれた静止物体に対する通常の定義に倣ったものである
突頻度が得られ，$\eta と S_{1}$ の関係は，最小自乗法により次の実験式で表すことができた。

$$
\begin{equation*}
\eta=1.46 \times 10^{-1} S_{1}^{1.92} \tag{6-4}
\end{equation*}
$$

Fig．6－13 Target efficiency versus stokes number
摬抖槽内で発生する二次核発生機構としては，摬排翼と粒子の衝突頻度に比例しまた衝突エネルギーにも比例すると仮定する。また，衝灾頻度Fcは，羽根の枚数f，衝突効率h，擋抖翼の敩引体積速度および粒了劕濁密度の積

$$
\begin{equation*}
\mathrm{F}_{\mathrm{C}}=\mathrm{f} \times \eta \times \text { (volume sweeping rate) } \times \text { (suspension density) }=\mathrm{k}_{1} \mathrm{f}_{\mathrm{n}} \mathrm{D}_{\mathrm{n}}^{2} u\left(n_{n} / \mathrm{V}\right) \tag{6-5}
\end{equation*}
$$

で与えられる。
一方，衝突効率はEq．6－4（S，数の1．92乗に比例するとして）が得られている。ここで は簡単のためにS，数の2乘に比例すると近似し，ワはEq，6－6でケーえられる

$$
\begin{equation*}
\eta=k_{2} S_{1}^{2}=k_{2}\left\{\left(\rho_{p}-p_{i}\right) q_{p}^{2} u /\left(9 \mu D_{b}\right)\right\}^{2}=k_{1} q_{p}^{1} u^{2} / D_{b}^{2} \tag{6-6}
\end{equation*}
$$

Eq．6－6をEq．6－5に代入すると，衝实頻度 F_{c} は

$$
\begin{equation*}
\left.F_{c}=k_{1} k_{3}\left(n_{s} / V\right)\right)_{p}^{1} u^{3} \tag{6-7}
\end{equation*}
$$

となる。
もう一つの因子，衝実エネルギーEは，近常，粘了所量およびチッブスビードuの 2 乗に比例すると仮定されるが，ここでは粒子質昆およびチッブスビードのいずれにも無関係に一定と仮定した。これは，先の㣫実雵験における衝犾狼の観祭によれば，粒子は撹抖羽根 の裏側にも衝突し単純にチッブスビードの2乘にエネルギーが比例すると考えられないこ と，また，衝实の際の羽根に対する恣勢（綡品の解での衝焱か侕での衝实か）により大い に二次核発生が変化することより，本㪼究箞网ではエネルギ……定とした方が現実的と考 えたからである。従って，

$$
\begin{equation*}
\mathrm{E}=\mathrm{k}_{\mathrm{t}}=\text { const. } \tag{6-8}
\end{equation*}
$$

となり，単位体積当りの二次核発生（摬排翼と粘子の衝突に起龱するコンタクトニューク リエーション）速度 B_{v} は，

$$
\begin{equation*}
B_{v}=k_{s} F_{s} E / V=k_{1} k_{s}\left\{k_{1} k_{s} \mid(n, \sqrt{\prime} / V) d_{p}^{\prime} u^{4}\right\} / V=\operatorname{Kl}(n, \sqrt{ }) d_{p}^{\prime} u^{3} / V \tag{6-9}
\end{equation*}
$$

となり，擋抖翼と粒子の衝乫によるコンタクトニッーークリエーションの速度は，粒子䁛濁密度一定の場合，粘了柊の4乘，－ッッフスヒーードの3巫に比例し，撹排㥍体僓に反比例する

他の 2 つのデータは勾配1のほぼ同•直線Lに乗った。図のようにサイズの小さい2つの撹掓槽ではここで扱ったモデルが成立していると思われる。しかし，全体として，点綴が 2 つのグループに分かれたことは，3種類の㯒抖棋全体に対してモデルを適用するためには今後の検討を続ける必要があると考える。

Fig．6－14 Secondary nucleation rate

$6 \cdot 3$ 結晶成長速度

$6 \cdot 3 \cdot a$ 実験およびデーータの整理江
後の全種晶の重量を測定し，その差から線成长速度G［mm／h］を求めた。

$6 \cdot 3 \cdot b$ 結果および考察

$6 \cdot 3 \cdot \mathrm{~b} \cdot \mathrm{i}$ ）結晶成長速度（；と過饱和度

Fig．6－15 Growth rate versus supersaturation

質の影響が，わずかに見られる…なわち，テクリル樹脂製の筧拌翼に比較して，ステン レススチール製撹排翼を使用した場合，絡思成辰速度が少し低い。これは，ステンレスス チール製の撹抄翼の場念，結晶长而が比較的泔られ易いためと帣えられる。 結晶表面が削られ易いということは，次核発生が起き易いことにもなるから，ステンレススチール
影響は明確にはみられなかった（Fig．6－10参少）

$6 \cdot 3 \cdot \mathrm{~b} \cdot \mathrm{ii}$ ）結晶成長速度（ と温度

Fig．6－16に結晶成長速度（ と温度しの関係を小した 烗烷外速度の場合と同様に，成

Fig．6－16 Growth rate versus temperature

Fig．6－17 Growth rate versus supersaturation at different temperatures

長速度Gは，高温になるほど增大した（Fig．6－17参照）。しかし，高過飽和域では，温度 の影響はほとんど消滅した 撹抖条件下の結唱成長速度は摩耗と真の成屒および微粒子の付着によって決まると考えられるが，高温の場合は真の成長が点越し，そのほかの因子は きほど影響しなくなったと考えられる。
$6 \cdot 3 \cdot \mathrm{~b} \cdot \mathrm{ii}$ i）種晶表面の微視的横造
二次核発生は，結晶存在下における㤥発师と足義されているが，その昰配的な様式は，擋拌翼，器壁あるいは結晶同志の衝爫に基づく㙨械的衝䌘による核発生，すなわちコンタ クトニュークリエーションである場合が多いと，そわれているコンタクトニュークリエーー ションによる核発生が起きていれば雨唱良䀦にその推跡が見いだせると推測され，また，
 の微視的構造を顕微鏡で観察してみた

Fig．6－18に使用前の皘楽の字真を示す。（1）には食体像を示した。種㫿は角がとれて丸 みを帯びている。同図（2）は，その表面拡大字真である，表而に比較的小さな凹凸があら れる。

（1）

（2）
Fig．6－18 Photographs of seed crystals before use

Fig．6－19には，成長後の種率の少真を小した（a－1），（a－2）は過冾却度… $\mathrm{t}=1 \mathrm{~F}$

$(a-1) \quad \Delta t=1^{\circ} \mathrm{C}$ ，stainless steel

$(a-2) \Delta t=1{ }^{\circ} \mathrm{C}$, stainless stecl

$(b-1) \Delta t=7{ }^{\circ} \mathrm{C}$ ，stainless steel

$(b-2) \Delta t=7^{\circ} \mathrm{C}$ ，stainless steel

$(c-1) \quad \Delta t=1^{\circ} \mathrm{C}$ ，acrylic resin

$(c-2) \quad \Delta t=1{ }^{\circ} \mathrm{C}$ ，acrylic resin

$(d-1) \quad \Delta t=7^{\circ} \mathrm{C}$, acrylic resin

$(d-2) \quad \Delta t=7^{\circ} \mathrm{C}$, acrylic resin

Fig．6－19 Photographs of grown seed crystals
（ステンレススチール製撹扯穓使用）の場分の兴真である。種䦔の形は使用前とほとんど
 （同図（b－1），（b－2）の写真参照）は，㮔唱は人きく成率し，表而の所！も人きくなり，ま た，その凹凸の単位も大きく，かつ，はつきりと师利形の㗐化ケトリウム結晶の構造が現

合と同様，過冷却度によつて稞品表而構漣が大きく変わつているしかし，種晶表而の縻
 6 •4撹拌槽内の晶析現象の倹討
$6 \cdot 4 \cdot a \mathrm{Ns} \cdots 0 \mathrm{~s}$ 帕線の形
本研穵では， N_{S} 対 θ_{S} を曲線近似してEq．6－2から㤥㷋生速赤及を求めた。先に述べた ように，この曲線の白がり方は過冷却度こtが小さいときは若下上に凸1，過冷却度 Δt が大きいときは下に凸となっていた。 すなわち，（．，tが小さくて）結晶成長速度が小さい ときは上に凸で核発生速度が封間と共に減少，（Ni t が大きくて）結晶成長時間が大きい ときは下に凸で核発生速度が時間と其に増加，ということである。

Fig．6－20 Ns versus θ s at a constant supercooling $\left(\Delta t=5^{\circ} 0^{\circ}\right)$

で一定の場合である，温度が高くなるに従い，曲線の形は下に川となっていくのがわかる やはりこの場合も，結晶成長速度が大きくなる（Gと温度の関係はFig．6－16参照）に従い，下に凸すなわち核発生速度が時間と具に增师している
曲線の曲がり方と結晶成長速度の関係は，先に小した結晶表面の微視的構造と過冷却度 $\Delta \mathrm{t}$ の関係と共に，結晶成長および二次核発生メカニズムに関連した興味ある問題である カリミョウバン結晶の場合＂は，過冷却度によらず常に雨線は下に凸になり，それは結晶質量の増加に伴い衝宊エネルギーが増加（その結果核発生速度が増大）したためと考えら れた。塩化ナトリウムの場合は，リに川になることもあるから，曲線の形は単に衝然エネ ルギーだけでは説明できない，表而の微視的粫造が関係していることが考えられるが，こ れは今後の検討課題である。

$6 \cdot 4 \cdot b$ 実装置データと実験データの比較

本研究では，擋㧔槽内で自由に動き回っている結晶1倜少りの一次核発生速度 β を求め た。実装置ではこのようなデータは夆測不叮能であるので，測定値は存在せず，実装置デ一夕と本実験の比較はできない

しかし，結晶成長速度については，比較が可能である，本研究における成長速度G ［mm／hr］の値は，先にFig．6－1．5で示したように，過飽和度の增玑と共に增大しその値は， $10^{-3} \sim 10^{-1} \mathrm{~mm} / \mathrm{hr}$ の範囲にあった。また，成長速度は温度と共に増加した（Fig．6－16）実装置のデータは， $10^{-2} \mathrm{~mm} / \mathrm{hr}$ のオーダーであり，本所究の低過飽和領域の値とほぼ同 じである。成長速度の比較から実装置の過飽和度（これの実測値は見あたらない）は，か なり低いのではないかと思われる
$6 \cdot 4 \cdot \mathrm{C}$ 結晶非懸濁系のテスト
一連の実験はすべて種晶存在下の実験であった データ解析においては暗黙の仮定とし て，結晶核は種晶起源と仮定した。すなわち，種品が添加されなければ核は発生しないと考えていた。この仮定の妥当性をチェックするため偅品を添㸺しないで溶波のみを流し， そのときの核（…次核）の有䑤を調べてみた Fig．（6－21にその絬果を示す，Fig．6－21の
式 $\mathrm{n}=(1 / \mathrm{v}) \mathrm{dN} / \mathrm{dt}$ を用いて訃算した。ここに v は溶波流完 $\mathrm{lc} \mathrm{m}^{3} / \mathrm{sec} \mid$ である．．．）であり，
 しているのがわかる。明らかに，㮔品が仿作しなくても絬品核が発升している。しかし， その数は非常に少なく，本研究における 次核の数に比較して充分少ない。（Fig．6－21 から，$\Delta \mathrm{t}=5 \sim 7$ Cにおいて，おおよそn 1 \｜number $/ \mathrm{cm}^{3}$ 〕である。 $\mathrm{n}=1$ としたと き，Figs．6－8，6－20における運忶除開3600 secの間の・次㤥累積個数Nは高々1x3600x

0．833＝3000個である．この値は，実測の ．次核数Nのオーダー－10年に比較して仼倒的に少 ない。）従って，先の仮定（…次核は発师しないとした）はほぼ満足されていると見なさ れる。

Fig．6－21 Nuclei number density versus time under condition of no seed crystals introduced

$6 \cdot 4 \cdot d$ 二次核発生速度 β の異常性

先に述べたように，こ次核発牛速度乃が過飽利度の增㸪に伴って減少するということは，晶析現象の常識からは考えられない，その意味で，本研究の結果は異常であるが，その異常性について検討する。

その前にまず， N_{s} 対 θ_{s} の実測データをもう－度詳しくみてみょう。Fig．6－22に，低過冷却度（低過飽和度）におけるデータを示す。 N_{s} 対 θ_{s} の曲線は，低過飽和度では上 に凸となり，また，過飽和度が小さい方が N_{s} が小さい（核発牛数が小さい）。これに対
 んど直線の場合もあった
 れる。Fig．6－24に，過冷却度じの場合の雬鼠袁而の㶦真を示す。それほど明確では

Fig. 6-22 Ns versus $\theta \mathrm{s}$ at lower supersaturations

Fig. 6-23 Ns versus θ sat higher supersaturations

Fig. 6-24 Change of surface structure of a growing crystal with time at a lower supercooling $\left(\Delta t=1^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{n}}=35^{\circ} \mathrm{C}\right)$

Fig. 6-25 Change of surlace structure of a growing crystal at a higher supercooling ($\Delta \mathrm{t}=5^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{n}}=35^{\circ} \mathrm{C}$)

ないが，種晶表面ははじめのうちは次第に＂摩耗＂が進行しているように見える。しかし，最後（ $\theta_{\mathrm{s}}=3600 \mathrm{sec}$ ）の写真には，表面に塩化ナトリウム特有の正方形の構造がみられ，成長の後が同われる。この最後の表面がさらに発達し，やがて撹拌条件下低過飽和におけ
 の場合の種晶表面構造の終封変化を小゙した 尘の低過咆利の場合に比較して，断い時期 （ $\theta_{\mathrm{s}}=0 \mathrm{sec}$ ）に既に成長の跡が出来始め，それが炎道していく様子がわかる。
先の写真で見た通り結䦔の表向は纱々刻々と変化するこの変化には2つの相反する変
 れにより二次核が発生する）である，もう・つは，結䦔の成長による表而修復効果である この両者が同時に進行し結晶はやがてある＂定常状態＂に楁ち着くと考えられる。ここで摩耗効果は過飽和度によらず，修復効果のみが過飽和度に依存し，しかもこれは過飽和度 の増加と共に速く進行すると仮定する。このような仮定に基づいて，種晶投入時（ $\theta=0$ ） からの二次核の累積個数 N の時間的変化を，概念的にFig．6－26に示すい図において，過飽和度が低くて温度も低い（例えば，．．．t $=0.5$ C． $\mathrm{L}_{\mathrm{n}}=2.5 \mathrm{C}$ ）場合，初期においては一次核は摩耗により発生し，徐々にその数を増やすしかし，徐々に表面上の突起（これが欠けることがすなわち二次㤥発生である）が少なくなり，一次核の発生頻度（曲線の勾配） は減少する。一方，結晶は成長するから，徐々に表而に西方形の構造（二次核の成長した ものだろうか）が現れ，㦱而構造ができあがっていく それにつれて こ 次核発生速度も少 しずつ増加していくここの間ももちろん摩耗は起きているが，やがて表面の状態は定常に達し，その時は核発生速度（すなわち曲線の刨配に対忥）は…定になる…一方，…次核発生速度の算出においては，$\theta \quad 15 \mathrm{~min}(=900 \mathrm{sec})$ 以降のデ・タ（ N_{s} 対 θ_{s} ）を直線近似 し，Fig．6－26の破線の傾きをß ${ }^{\circ} \mathrm{S}$ とした，このことは，低過飽和，低温の場合は，摩耗速度が減少していく過程を直線近似し速度を求めたことになる。過飽和度が少し高くなる と（例えば，$\triangle \mathrm{t}=1 \mathrm{C}, ~ \mathrm{t}_{\mathrm{n}}=25 \mathrm{C}$ ），摩耗の進み具合いは変わらないが，成長による表面修復作用が早まり，定常に達する時間も舁まる：この場合の，$\theta=15 \mathrm{~min}$ 以降の N_{S}対 θ_{S} の直線（近似）の傾き（ \therefore 次核発生速度 β ）は，摩轮段階から表面構造の発達段階 に移る過程で決定されるため，見かけト小さくなるこのように，先のßの異常は，摩捒効果と表面修復効果の時期の問題として説明される

Fig．6－26 Hypothetical change of cumulative number of nuclei

Fig．6－23は $\triangle \mathrm{t}=3^{\circ} \mathrm{C}$ ， $\mathrm{t}_{\mathrm{n}}=35^{\circ} \mathrm{C}$ の N_{s} と 0_{s} の点緅でこれは直線となったが，この場合，成長による結晶表面の修復は，先の場合に比較してさらに早く，$\theta=15 \mathrm{~min}$ のときは既に始まっている。しかし，王方形の構造（突起）の単位は比較的小さく，その大きさの変化もゆっくりであるので，二次核の発生速度はほとんど・定で， N_{s} 対 θ_{s} は直線とな っていた。このことは，時間が経過すれば，構造単位も大きくなり，やがて二次核発生速度も定常に達すると考えられる

これより高過飽和になると， N_{s} 対 θ_{s} 州線はドに川となった（Fig．6－23）が，この場合は過飽和度が高いため，成長による修復がさらに速く，正方形の实起の単位の增大が激 しく，定常達成前の傾きの增加期間が，ちょうど，次㤥発生速度を決定した期間（ $\theta=$ $900 \sim 4500 \mathrm{sec})$ に一致していたと考えられる．．

一方， $\mathrm{t}_{\mathrm{n}}=60{ }^{\circ} \mathrm{C}$ の場合の N_{s} 対 O_{s} は，きれいな直線となっていた。このときは，高温

のため成長による修復がますます速尗り，O 1 15 min で既に定常になっていたと考えられ
 の（ β の異常の場合の）丒線が現れた。
$6 \cdot 4 \cdot \mathrm{e}$ 成長データと生成結晶の比較

比較して高くなったためと考えられるしかし，その思も高過飽和ではほとんど䑰くなっ ていた。これは，高過飽和領域では，先に述べたように，摩轮よりも種楽表面の修復作

Fig．6－27 Comparison of growth rates from different sources

用が顕著に起きており，摩耗の効果が現れなくなったためと考える。顕微鏡下の値は，撹
 ないものの，溶液中に微結晶（：次核）が仔化していなかったため，側濁微結晶が結晶に

付着し，それにより結晶成長速度が垍大する現象＂が起こらなかったためと考える。
一方，成長後の結晶の宗真（Fig．6－26）を見ると，結唱表面の微絬晶は，その方向がき れいに前っている。付着結晶がこのように方问を揃えることは考えにくく，その意味では，二次元核成長機構も否定できないと思われ，これは今後の課題である。
いずれにしても，撹汼条作ドの結楽を見ると，その或而は滑らかではなく，凹凸がかな りある。このような表面構造をとつた場合，表而の川川阳隙間に母液が入り込む可能性が あり，結晶純度に影響することが心配される

REFERENCES

1）Takahashi，K．et al．，Journal of Chemical Engimeering of Japan，25，73（1992）
2）化学工学協会編，＂化学工．学便覧（改訂5版）＂，p．778，丸善，東京（炤和63年）
3）佐藤努，岩手大学修卜論文（平成元年3月）
4）Toyokura，K．，et al．，＂Industrial Crystallization 84＂，ed．by S．J．Jancic and E．J． de Jong，p．37，Elsevier，（1984）．

7．塩化ナトリウム結晶の晶析速度と過飽和溶液内に懸濁する微結晶の晶析速度への影響

工業晶析装置内では結晶は多数懸濁している状態で成長しており，懸濁結晶の核化速度 や成長速度は装置•操作の設計上きわめて重要である。
本研究では小型晶析装置内に結晶を懸濁させ，溶液のみ連続的に供給することによって比較的均一な過飽和状態下での結晶核の発生速度と結晛の成長速度を実測した。

$7 \cdot 1$ 雵験

$7 \cdot 1 \cdot a$ 実験装置

本実験で使用した実験装置の概略をFig．7－1に示す。Fig．7－1に示した各機器の詳細は以下のようであった，原料供給槽，1＇は共に内のリが，縦 32.0 cm ，直径 33.0 cm ，肉厚 1.0 cm の円筒型の透明硬質塩ビ製タンクで，二槽直列に連結して原料溶液の供給橧とした。 これらにはアクリル製のふたがしてあり，加熱による烝気の散逸を防止した。これらの原料槽内には，デジタルコントローラーとトライアックリレーによって温度制御している 500 Wのテフロンヒーターと，定速かくはんのできるかくはん機を設置し，供給溶液を設定温度に保つようにした。

循噮用のボンブ 2 はFURUE SCIENCE製PR－LV 型ローラーポンブで，200～700 $\mathrm{ml} / \mathrm{min}$ の範四の原料溶波を一定流量で倛紛することができるようにした。

バッファータンク 3 は，500 mlの溶液を持つナス型フラスコで，2のローラーポンブ によって生じるバルス流を消墄させて，ほぼ一様な流動状態にするためのものであった
実測できるものであった．
熱交換器5の熱交換部は7×10 mmのトアロンチューブ8．5 mを円筒形に巻いたもので， $280 \times 440 \times 270 \mathrm{~mm}$ の硬質ブラスチック製の恒温㡟6内に設置されており，溶液がチューブ内を通過することによって所望の操作温度まで椧却できるようにした。また恒温槽内の温度はクーラー8およびトライアックリレーに接続した500Wテフロンヒーター9を断続制御 することによって一定に保った。
示す。晶析器への溶液流入口は底部（a）であり，流入いの上には供給された溶液を整流す るためのガラスビー－ズを詩めた慗流部を設けた…浚液の排出いは上部の侧壁に設けられた枝管（b）および衼管（c）であるが，（b）は原料慺1＇に，（c）はサンブリングセルにそれぞれ接続 した。通常の操作では枝管（c）はコックによって閉じ，溶液は枝管（b）を通して循睘したが， サンブリング時には枝管（c）のコッ㩰作によって流れをサンブリングセルに入るように変え

られるようにした。また，晶析器内の溶液温度の実測のため，温度計は枝管（b），（c）の間に設置した。

1．Feed tank
l＇．Dissolution ta．ak
2．Roller pump
3．Buffer tánk
4．Flow meter
5．Heat exchanger

6，6＇．Thermostat bath 7．Crystallizer
8．Cooler
9．Heater
10．Sampling cell

Fig．7－1 Schematic diagram of experimental apparatus

Fig. 7-2 Fluidized bed type crystallizer

恒温槽内に設置されたクーラー8およびヒーーター－9はそれぞれトーマス科学器械製のハ ンディクーラTRL－107A（300W）および国領電機製テンロンヒーター（500W）であった。サン ブリングセル10の形状およびけ法はFig．7－3に示す通りである

Fig．7－3 Sampling cell

$7 \cdot 1 \cdot \mathrm{~b}$ 実験方法

$7 \cdot 1 \cdot b \cdot i)$ 原料溶液の調整

所定温度に設定した原料溶液調整用の恒温槽以に設置した 2 基のセバラブルフラスコ内 に過剩の塩化ナトリウムを添加し，フラスコ内を結晶が上部まで充分に側濁するようにか くはんした。その状態で120分以上保った後にかくはんを停止し，未溶解の側濁微結晶を沈降させるため30分以上そのままに放置した。このようにして作成された上澄み液をフ ィルタを用い，ろ過分離して原料溶液とした

Fig．7－1の原料橧 1 および1＇内の温度を，溶液が术飽和になるように笣和温度よりも10
溶解した。溶液内に懸濁している結晶を完全に浴解した後，装置内に所望流量の原料溶液 をローラーボンプ2を用いてFig．7－1の1－2＊3－4…5－7…1－1 の順にて循環した。供給流量の調整はバッファタンク3とフロー－メーター4の間に設置されたバイバスのコ ックを開閉することによって行った。また一定の温度で操作するため6の恒温槽内の冷媒 の温度は，晶析器内の温度が所定のものになるように温度制御を行った。このようにして溶液をしばらく循環し続けることによって，原料慒内および晶析器内の温度は所定の一定温度とした。

供給溶液流量および晶析器内の溶液温度が…定になってから約30分間同一の状態を保
 を開始した。本実験で使用した稿晶をFig．7－4に小ず．これは28～32meshでふろい分け

Fig．7－4 Seed crystal

しておいた市眅の笽化ナトリウム結晶（直脎 0.51 mm ）であり，これを約 10 g 精秤して種晶として晶析器に添加した。

種晶を添加した時点から，結晶成長による澧度低下を防止し供給溶液の過飽和澴度を…定に保つために，晶析器からのオーバーフロー溶液は原料憎1’には再循環させずに廃液用タンクに流下させた。実験操作は，晶析器内温度•供給流量を一定に保ち，種晶添加か ら約50分間結晶を成長させた後に恒温槽 6 内から晶析器 7 を引き上げ，全結晶を溶液と共 に濾紙上に取り出し，吸引濾過によって結晶と溶波とを完全に分離し，エタノールで充分 に洗浄した。

こうして得られた成長結晶をデシケータ内にて缜燥した後に，その重量わよび粒径を実測した。粒径の測定法については，乾燥後の成厓紹晶を顕微鏡で20倍程度に拡大して写真撮影し，任意の1000固の結晶に関してその粒径を電子ノギスで測定した。

実験は，過飽和度については0．015～0．042［mol／ $1000 \mathrm{gH}_{2} \mathrm{O}$ ］，供給溶液については空塔流速 $0.6 \sim 0.87 \mathrm{~cm} / \mathrm{sec}$ の操作条件で行った

$7 \cdot 1 \cdot b \cdot i i i)$ 二次核発生速度の測定

二次核発生速度の測定は， $7 \cdot 1 \cdot \mathrm{~b} \cdot \mathrm{ii})$ の結晶成長速度の測定と平行して同一の操作時に行った。すなわち結晶流動層内を通過し二次核を含んだ溶液を，Fig．7－2に示した晶析器 の枝管（c）のコックからサンブリングセル内に採取した。

溶液を採取したサンブリングセルは，恒温慒内に120分間静置し微結晶を観察できる程度まで成長させた後に，VTRによって録画し，微結晶の数を画面ごとに計数した。

$7 \cdot 2$ 実験結果および考察

$7 \cdot 2 \cdot \mathrm{a}$ 結晶成長速度
$7 \cdot 1 \cdot b \cdot i i)$ で撮影した実験終了後の結晶の写真から粒径分布を実測し，それをRosin－ Rammler線図に点綴した 空塔流速 $0.87 \mathrm{~cm} / \mathrm{sec}$ の条件下で過飽和度を変化させて得られ た結果をFig．7－5に示す，実験終了後に得られた，任意の結晶 1000 倜について顕微鏡観察 した結果，得られた結晶には添妡種鼎の凝集したと思われるものは存在せず，それが成長 したと判断されるもののみしか認められなかったことより，実験操作中に計数対象となる贔濁結晶個数の変化はないと考え，Fig．7－5から種品と製品結唱の粒径分布のグラフ粘径差より線成長量を求め，この値から線成長速度を算出した：この結果，溶液流量が一定の時の結晶成長速度と過飽利度の闑係をFig．7－6に示す。
Fig．7－6中の 0 ，\square ブロットはそれぞれ $R=50 \%, ~ R=10 \%$ における値を示しており， $\mathrm{R}=50 \%$ では，結晶成長速度と過跑和度との閣係を雨対数点綴すると， $\operatorname{Cl}=0.023$ $\left[\mathrm{mol} / 1000 \mathrm{gH}_{2} \mathrm{O}\right]$ 以上で一直線上と見なすことができ，その勾配は 0.5 となった。それよ

Fig. 7-5 Rosin-Rmmler plot
$\mathrm{dL} / \mathrm{dt}[\mathrm{mm} / \mathrm{hr}]$

supersaturation [mol/kgH2O]

Fig. 7-6 Correlation between crystal growth rate and supersaturation

り，流動層内における塩化ナトリウム結晶の成長速度と過飽和度との相関式はEq．7－1

$$
\frac{\mathrm{dl}}{\mathrm{~d} \theta}=2.9 \mathrm{x}(\Delta \mathrm{C})^{0.5}
$$

となった。 R＝10 \％つまり人粘徍侧の成長速度は，R＝50\％\％り高い値を示し，成長速，度 に対する過飽和度の指数は0．5となった
長速度の相関式の過飽和度の指数は1．1になることが報告されている1）この静止系実験 で得られた結晶は透明で形状が整っており，その衣而状態は非常に平滑な而を有していた それに対して流動層内で成長した結晶はFig．7－7に示すように表面状態が非常に荒れてお

Fig．7－7 Procut crystal．Operation period $50[\mathrm{~min}] \Delta \mathrm{C}=0.027\left[\mathrm{~mol} / 1000 \mathrm{gH}_{2} \mathrm{O}\right]$
り，たくさんの結晶が組合わさって形成されたような形状を示していた。これは，層内で発生した微小結晶が流動層内の劕濁結晶の表百に付着して，そこで成長したものであろう と考えられる。さらに成長結唱内で核となっている種思は，成長後の顕微鏡観察によって も成長した形跡は見られなかった。これらのことから，流動層内における笽化ナトリウム結晶の成長機構は，絬晶表面に付普した微綡品の成言が人きく影響しているものと考えら れる。
 いると推測されるので，多結唱系における絬品成言速度は，雄濁微結晶の影響を受け，そ の挙動が重要な因子であると考える。
$7 \cdot 2 \cdot b$ 二次核発生速度
晶析器内に添加された種晶はFig．7－5の粒径分布に示すように，実験操作中成長し続け ており，流動層高は操作時間の経過と共に増大した。年験操作中は溶液流速は一定であっ たので，その結果として流動層内の空間率も時閭によって変化すると推測される。懸濁䁘化ナトリウム結晶の形状を江方体で近似すれば，任意操作時1での流動層内の空間率 $\varepsilon(1)$ $[-]$ は，添加種晶個数 m と流動層高 $\mathrm{h}(\mathrm{t})[\mathrm{cm}]$ および結晶粒径 $l(\mathrm{t})[\mathrm{cm}]$ ，晶析器の断面積 S ［ cm^{2} ］より

$$
\begin{equation*}
\varepsilon(t)=1-\frac{m\{1(t)\}^{3}}{S h(t)} \tag{7-2}
\end{equation*}
$$

となる。ここで流動属内における留化ナトリウムの成長速度については，絬晶成長時間に対する成長速度の関倸が，前年度の実験結果より一次的であるという結論から，種晶の粒径を $1_{\mathrm{s}}[\mathrm{cm}]$ ，製品結晶の粒徍を $1_{\mathrm{p}}[\mathrm{cm}]$ ，絬晶成長時問を1［ sec$]$ とすると，粒径 $l(1)$ は

$$
1(t)=l_{s}+\frac{1}{\tau}\left(l_{p}-l_{s}\right)
$$

Eq．7－3となる。また，その流動層内に懸濁する結晶の総表面積a［cm²］は，

$$
\begin{equation*}
a=6 m\{1(1)\}^{2} \tag{7-4}
\end{equation*}
$$

となる。一方，溶液がこの流動首を通過するのに要する下均滞留時間 $\theta[\mathrm{sec}]$ は，流動層 の空間率 E （ 1 ）と空塔流速 $u[\mathrm{~cm} / \mathrm{sec}]$ から

$$
\begin{equation*}
0=\frac{h(1) \varepsilon(t)}{u} \tag{7-5}
\end{equation*}
$$

となる。実際に本実験で得られた結晶は，ほぼ立う晶とみなせる形状をしていたのでEqs． 7－2，7－3，7－4，7－5を用いて結品総而積a および溶液滞留時間qを求めた

VTRによって計数されたサンブリングセル内に存在する微小結晶数は，サンブリング セル内に同時に採取された側濁溶波の単位溶液容債当りの結晶数に換算し，これをn ［number／cm ${ }^{3}$（sol）］として表す。一方，流動層内の弾位結晶表面樍から発生した二次核発生速度 f^{\prime}［number／cm ${ }^{2} \mathrm{sec}$ ］は，

$$
\begin{equation*}
\mathrm{f}=\mathrm{n} \tag{7-6}
\end{equation*}
$$

Eq．7－6で算出した。
 る．．それより勾配を求めると4．6となる．．．次に「を，Rcの4．6乘で制った值に対して過筂利度を点絲したのがFig．7－9である。このグラフより佰きを求めた絬果，過飽和度の指数は 4．3となった。そこで実测唌より得られた食てのがに対して，過飽和度の4．3乘とReの4．6乗の積を点綴するとFig．7－10となる。Fig．7－10より明らかなように，多少点絲はバラック

Fig. 7-8 Correlation between secondary nucleation rate and reynolds number $\left(\triangle \mathrm{C}=0.027\left[\mathrm{~mol} / 1000 \mathrm{gH}_{2} \mathrm{O}\right]\right)$

Fig.7-9 Correlation between secondary nucleation rate and supersaturation

Fig. 7-10 Correlation between secondary nucleation rate and $\Delta C^{4.3} \operatorname{Re}^{4.6}$

ものの，これらの点綴は 45 度の勾配の直線上にあると見なした。これより塩化ナトリウム の二次核発生速度 f^{\prime} は，

$$
\begin{equation*}
\mathrm{f}=82 \times(\Delta \mathrm{C})^{4.3} \mathrm{Re}^{4.6} \tag{7-7}
\end{equation*}
$$

となった。
二次核発生に関しては様々な現象モデルが提出されているが，その主な機構については，結晶の周りの溶液の流れに基づくシェア・ストレスによる核発生と，側濁結晶同士または結晶と装置との衝突による核発生の 2 つ，またはそのうちの一方が支配的なことが多いと考えている。同一の流動首型晶析装置による二次核発生速度については $\mathrm{CuSO}_{4} 5 \mathrm{H}_{2} \mathrm{O}$ ， $\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2} 12 \mathrm{H}_{2} \mathrm{O}, ~ \mathrm{MgSO}_{4} 7 \mathrm{H}_{2} \mathrm{O}$ に対してEqs，7－8，7－9，7－10がそれぞれ報告されてい る ${ }^{2,3)}$ 。

$$
\begin{align*}
& \mathrm{f}=1.2 \times 10^{6} \times(\Delta \mathrm{C})^{1.6} \mathrm{Re}^{4.0} \tag{7-8}\\
& \mathrm{f}=1.0 \times 10 \times(\Delta \mathrm{C})^{3.3} \mathrm{Re}^{2.5} \tag{7-9}\\
& \mathrm{f}=3.6 \times 10^{1.5} \times(\Delta \mathrm{C})^{3.8} \mathrm{Re}^{4.8} \tag{7-10}
\end{align*}
$$

これらEqs．7－8，7－9，7－10における過飽和度の指数より二次核発生機構が検討されてお り，そこでは核発生速度に対する過飽和度の指数が，成長速度に対する過飽和度の指数と ほぼ等しい硫酸銅についてはコンタクトによる核化が支配的であるが，核発生に対する過飽和度の指数が，成長速度に対する過飽和度の指数より大幅に大きいカリ明礬や硫酸マグ ネシウムでは溶液流による剪断力による核化が支配的であることが報告されている。核発生速度への操作条件の影響については慎重な検討は必要であるが，これより考えると本実験の操作範囲において塩化ナトリウムの場合は，溶液流による剪断力の影響が支配的では ないかと思われる。
$7 \cdot 2 \cdot \mathrm{C}$ 結晶成長速度と二次核発生速度
成長速度に対する二次核発生速度の関係を点綴したものをFig．7－11に示す。
Fig．7－11を見ると，二次核発生速度が結晶成長速度 $0.27 \mathrm{~mm} / \mathrm{hr}$ 以上では急激に増加す る傾向にあるのがわかる。これは核発生速度に対する過飽和度の指数が大きいのに対し て，7•2•aで求めた結晶成長速度に対する過飽和度の指数が 0.5 であったという実験結果に関連してくるためと考えられる。

Fig. 7-11 Correlation between crystal growth rate and secondary nucleation rate

REFERENCES

1．豊倉 賢，神田栄一郎，星野哲也，日本海水学会第40年会，研究技術発表会講演要旨集，

24（1989）

2。豊倉賢，佐藤晶英，内山誠，田和健次，化学工学論文集，6，6，603（1980）
3。豊倉賢，山殷勝已，化学工学論文集，1，3，262（1975）

8 連続晶析装置による塩化ナトリウムの晶析

$8 \cdot 1$ 分級層型晶析装置および操作法
$8 \cdot 1 \cdot a$ 実験装置
本実験で使用した蒸発式連続分級層型実験装置の概略をFig．8－1に示す。原料供給槽1 は内径 33.0 cm ，肉厚 1.0 cm ，の円筒型の透明硬質アクリル製タンクで，原料となる塩化 ナトリウム溶液の供給槽とした。この原料供給橧には，低速かくはんのできるかくはん機 が設置してあり，充分にかくはんを行うと同封に，デジタルコントローラとトライアック リレーによって温度制御している500Wテフロンヒータ2機を用いることにより，供給溶液を所望する設定温度に保つようにした。

1．Feed tank
2．Evaporator
3．Heat exchanger

4．Roller pump
5．Crystallizer
6．Vapor condense

Fig．8－1 Schematic diagram of the apparatus（Fluidized crystallizer）

蒸発装置2は容積5リットルのセパラブルフラスコとマントルヒータからなり，ローラ一ポンプ 3 によりセパラブルフラスコ内部に発生した蒸気を吸引し，冷却管 4 によって発生した蒸気を液化させるものであった。またバッファータンク5は500mlナス型フラスコで，装置内循環用ローラーポンプにより生じるバルス流を消滅させて，溶液をほぼ一様な流動状態にするためのものであった。

晶析装置6はアクリル製円筒型晶析器で，その形状及びす法をFig．8－2に示す。供給溶液は装置上部より内管を通じて晶析器内に流入し，外管上部に設けた枝管より原料供給槽 1 に流出し，装置内を再循澴するようにした。晶析装置下部にはバルブが設けてあり，こ れを操作することによって成長結晶の抜き出しを行った。击た，結晶抜き出し用バルブ内 スケーリングの発生を防止するために晶析器内温度に保たれた温水層を設置し，バルブは その中に浸漬した。なお供給樌はTable8－1に示した Runs 1 では塩化ビニル製（内径 250 mm ，高さ 275 mm ）で，Table $8-2$ のRuns 2ではガラス製（内径 365 mm ，高さ 310 mm ） であった。

Fig．8－2 Fluidized crystallizer

$8 \cdot 1 \cdot b$ 実験操作

原料供給槽 1 内の溶液を，所定の操作温度で飽和になるように調製し，溶液を装置内に循環させた。供給溶液流量及び原料槽内の溶液温度が一定になってから，晶析装置 6 内に所定の高さの流動層を形成するように種晶となる塩化ナトリウム結晶（国産化学株式会社•試薬特級）を添加し，核化•成長させた。結晶の抜き出しは，結晶の成長による層高 の増分が設定した流動層高の 10% 以内になるように，晶析装置 6 下部に設けられたバル ブを操作し断続的に行った。抜きだした結晶は光学顕微鏡によって観察を行い，最初に添加した種晶が完全に除去され，それが装置内で発生した核を基にして成長したものと確諗 できた時点で測定実験の開始とした。

抜きだした製品結晶はろ紙上に取り出し，吸引ろ過によって結晶と溶液とを完全に分離 し，エタノールで洗浄した。こうして得られた結晶を温度 $30^{\circ} \mathrm{C}$ —定に保たれた乾燥器内 で充分に乾燥した後に，その重量及び粒径を測定した。粒径は，乾燥後の成長結晶を光学顕微鏡で $20 ~ 30$ 倍程度に拡大して写真撮影し，その粒径を電子ノギスで測定した。

実験操作中の溶液の過飽和度は，晶所装置の入口，出口付近に設けたバイバスから溶液 を採取し，密度比重計（京都電了•社製DA－300）によって $70^{\circ} \mathrm{C}$ における溶液密度を実測し，検量線から溶液濃度を推算することによって，装置入口出口の 2 点での過飽和度を求めた。

実験は，Table8－1，Table8－2に示した条件で行つた。実験終了後，経過時間に対して積算生産量を点綴し，その傾きが直線になり，また各時間毎に抜き出した製品結晶の粒径分布が一致した時点を定常と判断した。
Table 8－1 Operational conditions of tests characterized by $T=T^{\prime}$（fluidized bed type）

$\begin{aligned} & \text { Fiunl} \\ & \text { nunber } \end{aligned}$	TITCl	TTT0］	V／InI	$\mathrm{H}[\mathrm{cm}]$	[cmisecil	（1－2）	т
1.1	52.5	52.5	108.0	15.0	2.0	0.180	1.9
1.2	52.5	52.5	141.5	20.0	2.0	0.193	3.2
1.3	52.5	52.5	174.0	25.0	2.0	0.241	5.3
1.4	55.0	55.0	108.0	15.0	2.0	0.272	3.5
1.5	55.0	55.0	141.5	20.0	2.0	0.278	5.5
15	55.0	55.0	174.0	25.0	2.0	0.270	6.5
1.7	57.5	57.5	108.0	15.0	2.0	0.133	1.6
1：8	57.5	57.5	141.5	20.0	2.0	0.153	2.3
1.9	57.5	57.5	174.0	25.0	2.0	0.266	5.1
1.10	60.0	60.0	108.0	15.0	2.0	0.048	0.37
1．11	60.0	60.0	141.5	20.0	2.0	0.140	1.5
1．12	60.0	60.0	174.0	25.0	2.0	0.207	3.0

Table 8－2 Operational conditions of tests characterized by $T^{\prime}=70^{\circ} \mathrm{C}$ higher than $\mathrm{T}=60^{\circ} \mathrm{C}$ （fluidized bed type）

Munber	T． \mid Cl	T					
\	V！Inll	H［cmil	U ［cmisec］	（1ヶ）	x！		
2.1	60.0	70.0	202.1	30.0	3.7	0.291	4.0
22	60.0	70.0	202.1	30.0	4.7	0.286	4.8
23	60.0	70.0	139.2	20.0	2.0	0.384	2.7
2．4	60.0	70.0	139.2	20.0	3.1	0.321	2.9
25	60.0	70.0	139.2	20.0	4.0	0.286	2.3
2.6	60.0	70.0	158.4	15.0	3.9	0.367	9.6
2 T	60.0	70.0	202.1	30.0	5.2	0.252	0.98

$8 \cdot 2$ 連続かくはん型実験装置による晶析実験
$8 \cdot 2 \cdot a$ 実験装置
本実験で使用した装置の概略をFig．8－3に示す。原料供給槽1は内容積17［1］の円筒型 ガラス製タンクで，定速かくはんのできるかくはん機およびデジタルコントローラーとト ライアックリレーにより温度制御しているテフロンヒーター・（500W2機）が設置されて おり，槽内を所定の操作温度に保てるようにした。㭽间筒型晶析装置 3 は内容積 $2.26 l$ （内径 285 mm ，高さ 300 mm ）で恒温槽 4 内に浸漬することにより装置内を所定の温度 に保った。丸底円筒型晶析装置の容積は 2.2 lであった。

1．Feed lank
2．Roller pump
3．Crystallizer

4．Thermostai baih
5．Heater

Fig．8－3 Schematic diagram of the experimental apparatus（MSMPR）
$8 \cdot 2 \cdot \mathrm{~b}$ 実験操作
原料供給槽 1 内には過剩に塩化ナトリウム結晶が沈澱しており，所定温度下での飽和溶液になるようにした。これをローラーポンプ2により晶析装置3に一定流量で供給した。晶析装置3の溶液量変化を $\pm 5 \%$ 以内に保つように断続的に結晶と溶液を抜き出した。装置内の温度が一定になって安定したところで，種晶として塩化みトリウム結晶（国産化学株式会社•特級）100 gを一度に添加し，以降は種晶を添加することなく実験を行った。装置内の懸濁液を経封的にサンブリングし，それを光学顕微鏡にて観察することによって，装置内に新たな微結晶が発生したことを確認した時点より装置内懸濁結晶の採取を開始し た。製品結晶は懸濁溶液を万過分離後，ヘキサンにより洗浄した後乾燥して，その重量及 び重量基準の粒径分布を測定した。実験条件をTable8－3に示す。

Table 8－3 Operational conditions of CMSMPR type crystallizer

Rum number	TVI	T［¢］	O．1．	I IIImin！	TII	（1．）
3．11	55.0	75.0	1.5	400	1.5	9.51×10^{-3}
3．2	45.0	75.0	1.5	400	1.5	1.34×10^{-2}
3．3	65.0	75.0	1.5	400	1.5	8.52×10^{-3}
3．4	70.0	70.0	4.5	400	0.5	1.74×10^{-2}
35	80.0	80.0	4.5	400	0.5	8.83×10^{-3}
3．6	75.0	80.0	4.5	500	0.5	6.28×10^{-3}

8•3•a 分級層型晶析装置
$8 \cdot 3 \cdot \mathrm{a} \cdot \mathrm{i}) ~$ 塩化ナトリウム結晶の析出速度
Table 8－1の操作条件に対応した結晶の析出速度P［g／hr］をTable 8－4に示す。この一連

Table 8－4 Tests results obtained from tests of operational conditions on table 8－1

Run nuriber	P｜oml	Phock	（allat）av ［mmわ1	Why	\MIMMI	आM11	V！（1－4）
\．1	21.90	0.0937	0.065	1.0×10^{9}	0.52	4.65	19.44
1．2	18.66	0.0610	0.040	5.5×10^{8}	0.56	6.47	27.31
1.3	17.04	0.0453	0.026	3.2×10^{8}	0.56	5.84	41.93
1／4	18.14	0.0776	0.042	3.5×10^{8}	0.68	5.07	29.38
1．5	15.51	0.0506	0.026	2.3×10^{8}	0.72	4.38	39.337
\o	15.70	0.0417	0.025	2.0×10^{8}	0.68	4.35	46.98
1．1．	19.71	0.0843	0.038	2.0×10^{10}	0.22	3.46	14.36
1． 8	20.05	0.0655	0.055	7.0×10^{8}	0.52	5.26	21.65
\＄9	19.79	0.0526	0.028	3.5×10^{8}	0.64	4.35	46.28
\＄10	29.97	0.1282	0.140	3.2×10^{10}	0.20	3.16	5.18
\＄．11	29.30	0.0957	0.090	1.8×10^{9}	0.52	5.03	19.81
1．12	26.12	0.0694	0.062	3.0×10^{8}	0.72	3.74	36.02

のテストにおいては晶析装置内および循澴系の槽内温度が等しく，その意味では系内全体が過飽和状態であると考えられる。また，本実験系では結晶の生産速度は溶液の蒸発速度に よって決まるので，操作温度の影響を受けると推測される。しかし，Table 8－4に示した $P / \rho_{c} V^{\prime}$ は，操作温度のみでなく装置内に懸濁している結晶量の影響を受けている。これ は晶析装置外の循環系内にも結晶が一部に懸濁していたためではないかと推測される。し かし，Fig．8－4（run 1－1 1o 1－12），Fig。8－5（run 2－1 to 2－5）に示すように結晶の積算重量 が経過時間に対して直線的に増加していたことより，操作はほぼ定常状態になっていると みなして以下の検討を行う。溶液循環系全体を考えると晶析現象は複雑で循環系内各部の㗭濁結晶量や粒径分布を検討しなければ晶析装置内の現象を理解できないが，循噮系内に
 は分級層晶析装置内で支配的に起こっていると考える

Run 1－1～3，1－4～6，1－7～9，1－10～12の各グル－－ブでは，Table 8－1とTable 8－4

Fig. 8-4 Correlation between cumulative weight of product and elapsed time obtained at test run numbers 1-1 to 1-12 in table 8-1

Fig．8－5 Correlation between cumulative weight of product and elapsed time obtained at tests run numbers 2－1 to 2－5

に示すように操作温度は同じであるが劕濁結晶量V＇（1－e）は異なっており，結晶量が多く なると， $\mathrm{P} / \rho_{\mathrm{c}} \mathrm{V}^{\prime}$ の値は小さく，また生成される結晶のモード径は増大する傾向があった。。 ほぼ同じ蒸発速度に対して，定常状態では晶折量も同じになるべきであるが，Table 8－4 に示すような傾向がP $/ \rho_{c} V^{\prime}$ にあったのは晶析装置内で発生した核の循睘系内における挙動のためと考える。つまり劕濁量が多くなると循擐する溶液の平均過飽和度が小さくなり，結晶核の発生数が少なくなることなどの影響がでているのではないかと思われるが，詊細 については十分な検討は䘕わなかった。

一方，供給蹧の温度を操作温度より10＂C高くして操作したときの実験結果をTable8－5 に示す。ここでの㫛析速度PはTable 8－4の数値に比洨して大きく $13.05 \sim 163.0 \mathrm{~g} / \mathrm{hr}$ の範囲に変動しているが，それは供給橧で蒸発した水烝気の一部を還流したためである。

Table 8－5 Tests results obtained from tests of operational conditions on Table 8－3

Run number	P【ゆM！	Plo, ［1／h］	（allat）av LHMM．	$\because V_{1}$	\} MWm	™	サ\Mせ！
2．11	31.63	0.0723	0.117	1.8×10^{7}	1.82	8.55	58.1
2．2．	26.12	0.0597	0.097	1.4×10^{7}	1.92	9.65	57.80
2．3	42.50	0.141	0.193	5.2×10^{7}	1.64	7.56	58.45
2.4	33.08	0.110	0.141	3.3×10^{7}	1.77	7.68	44.68
2.5	38.89	0.127	0.189	3.6×10^{7}	1.77	10.0	39.81
24	13.05	0.0381	0.0519	9.1×10^{6}	1.81	9.95	58.13
27	112.0	0.256	0.590	2.4×10^{7}	2.45	10.3	50.93

$8 \cdot 3 \cdot a \cdot i i)$ 生成結晶の粒径分布
Tables 8－1，8－2に示した条件の操作で定常となったと見なしたところで得られた結晶 の粒径分布をRosin－Rammler線図に点綴した。Run 1－1～12，およびRun 2－1～7を例にと りそれぞれFigs．8－6，8－7に示す。その勾配より粒径分布を示す均等数m および積算粒径分布の 36.79% に相当する粒子特性数 1^{*} を求めた。一方得られた結晶粒径分布の最大値を示すlmと1＊の間には，

$$
\begin{equation*}
l_{\mathrm{m}}=\left(1+\frac{2}{\mathrm{~m}}\right)^{\frac{1}{\mathrm{~m}}} l^{*} \tag{8-1}
\end{equation*}
$$

の関係があり，これより各操作条件に対応したlmを求め，それをTables 8－4，8－5に示す。
Table 8－1とTable 8－2の操作条件の差異を検討すると前者の操作では晶析装置から溢流 するのではないかと思われる結晶核あるいはその粒径に近い微結晶およびはい種は，成長 しつつ系内を循環して晶析装置に戻ると考えられるが，後者の操作ではそれらはほとんど溶解しているものと推察した。前者では長時間の操作中に循環系の一部に微結晶が懸濁•滞留しているのが認められるようになったが，後者のテストではそのような微結晶の存在 はほとんど認められなかった。
分級層型晶析装置にて得られた結晶の写真を，Run1－1，Run1の2－1，2－7，を代表例と してFigs．8－8～8－10に示す。系内温度がほぼ－－定のRuns 1 の操作においては得られる結晶は小さく立方形状の透明なものであったが，供給槽の温度をトげたRuns2の操作で結晶粒径は粗大化しており，形状も丸みを帯びていた。特に蒸発速度を高くしたRun2－7に おいては操作過飽和度が高くなり，溶液循環速度も大であったことより結晶層を通過した過飽和溶液の濃度低下は少なく，操作過飽和度は高くなっていたと考えられる。この操作 ではTableに示されたモード径lmはRun2－1－6の実測値に比較して大きく，また結晶は微

結晶が粗に凝集しているように見られた。

Fig．8－6 CSD of product crystals obtained at test run numbers 1－1 to 1－12

Fig. 8-7 CSD of the product crystals obtained at test run number 2

Fig. 8-10 Photographic picture of product crystals obtained at
test run number 2-7
Fig.8-9 Photographic picture of product crystals obtained at
test run number 2-1
$8 \cdot 3 \cdot \mathrm{~b}$ 混合層型晶析装置
$8 \cdot 3 \cdot \mathrm{~b} \cdot \mathrm{i})$ 塩化ナトリウム結晶の析出速度
Table 8－3に示した操作条件で得られた結晶量の定常操作になってより積算したものを経過時間に対して点綴しその勾配より結晶の析出速度を求め，それをTable 8－6に示す。

Table 8－6 Results obtained from tests of operational conditions on table 8－3

$\begin{aligned} & \text { Rult } \\ & \text { nimber } \end{aligned}$	P［oh］	P!ocly	（d／dt）av． $[\mathrm{mm} / \mathrm{h}]$	$\begin{aligned} & \text { Fyky } \\ & 1 / \mathrm{m}^{3} \mathrm{~m}_{1} \end{aligned}$	W！		I． 1.
3．11	13.2	2.74×10^{-3}	0.0416	2.9×10^{7}	0.59	4.6	2.7
3．2	10.2	2.09×10^{-3}	0.0212	2.4×10^{7}	0.59	4.4	2.6
3．3	16.4	3.34×10^{-3}	0.0509	6.3×10^{7}	0.58	3.3	1.7
3．4	19.9	4.07×10^{-3}	0.0384	2.7×10^{7}	0.63	6.1	3.9
3．5	69.5	1.42×10^{-2}	0.2524	1.4×10^{8}	0.62	4.6	2.7
3．6	53.3	1.09×10^{-2}	0.2721	9.18×10^{8}	0.61	2.2	0.9

またその時装置内に懸濁していた結晶の䀠濁密度は，装置内より排出されるスラリ一中の結晶の懸濁密度とほぼ一致しており，それらの値もTable 8－6に示す。
$8 \cdot 3 \cdot b \cdot$ ii $)$ 生成結晶の粒径分布
Table 8－3のRun3－5のテストで得られる結晶の重量基準の粒径分布をFig．8－11に例示 する。

Fig．8－11 CSD of product obtained at test run number 3－5

1 ［mm］

Fig．8－11中の点綴は結晶が採取された時間ごとに示したもので，多少のばらつきは亦っ たが，ほぼ同一直線上にある。これらの点䋴より，粒子特性数 1_{w} および均等数 n を求め， それらをTable 8－6に示す。またこれらの 1_{w} およびnより，モード径 1_{m} および個数基準の均等数mを求め，それらも同時にTable 8－6に示す。1m，m，（1－8）をTables 8－4，8－5と比較すると分級層型装置から得られる均等数mの値は混合層型より大きかったが，混合層 より得られた結晶はFig．8－12に示されるように丸みのある結晶であった。これは混合層型の方が結晶核の発生が大きく，それらの凝集によった形状で均等数の小さいのは滞留時間分布の羑のためと考える。

1 mm

Fig．8－12 Photographic picture of product crystals obtained at CMSMPR crystallization test $8 \cdot 4$ 晶析特性操作線

Figs．8－1～3に示した連続晶析操作で得られる結晶の粒柊 1 m と粒径分布を示す m および その時の装置容積当りの生産速度P $\rho_{\mathrm{c}} \mathrm{V}^{\prime}$ より，設訃線図小に晶析特性操作点を点綴 したものをFig．8－13に示す。Fig．8－13中のO印はTable．8－1の操作条件下で得られた Table 8－4のデータを点綴したもの，また，○および○印はそれぞれTable 8－2の操作条件下で得られたTable 8－5，およびTable 8－3の操作条件で得られたTable 8－6のデータを点綴したものである。この設計線図の操作点は，理論的には，Eq．2－84同様で相関されたも のであり，ここで I_{4} は，

$$
\begin{gather*}
\frac{\underline{P}}{\rho_{c} V} l_{m}=(1-\varepsilon)\left(\frac{d l}{d \theta}\right) \frac{1}{L_{4}} \tag{8-2}\\
I_{4}=\left\{1+\frac{2}{m}\right\}^{\frac{1}{m}} \frac{\int_{0}^{\infty} x^{m} e^{-x^{m}} d x \int_{0}^{\infty} x^{3} e^{-x^{m}} d x}{\int_{0}^{\infty} e^{-x^{m}} d x \int_{0}^{\infty} x^{m+2} e^{-x^{m}} d x} \tag{8-3}
\end{gather*}
$$

である。一方，日本の塩業各社のデータも点綴すると，Fig．8－13中の○，\triangle ，Δ ，\triangle ， \square ，■，\square ，で示されるようになり，装置の大きさはTable 8－7（Table中左1段のType A，BはそれぞれFig．8－14中i），ii）の装置形式を表す）に示すように $45 \sim 140 \mathrm{~m}^{3}$ と大きいに もかかわらず，本研究で用いた実容積 $108 \sim 2000 \mathrm{ml}$ の装置のものとほぼ近いところに点綴された。一方，本研究で行われた実験はTables 8－1～8－4に示されるように，操作条件 が大幅に異なるために，その各々に分けて倹討する。

Table 8－7 Range of data obtained by industrial crystallizers

Wind	Y！$\square_{\text {ald }}$	PIMV：l！n！	W／mm］	\＃．4	\＃\＃【！
A	－	0．02－0．085	1．14－2．00	4．8－6．2	0.30
B	61	0．016－0．0256	1．25－1．31	2．5－3．5	0．25－0．40
B	140	0．0113－0．015	2．45－2．60	2．5－3．5	0.219
B	60	0．018－0．049	0．54－1．05	2．9－5．0	0．039－0．078
B	85	0．006－0．02	0．082－0．88	5．4－6．1	0.10
B	45	0．025－0．061	0．44－1．78	3．5－4．8	0．012－0．316
B	$\begin{gathered} 110- \\ 120 \end{gathered}$	0．013－0．02	0．71－1．29	2．8－4．1	0．11－0．23

i）Type A

ii）Type B

1．Crystallizer	2．Evaporator	3．Heat exchanger
4．Pump	5．Product	6．Feed
7．Vapor	8．Side flow	9．Main flow

Fig．8－14 Schematic diagram of industrial crystallizer
$8 \cdot 4 \cdot a$ Table $8-1$ に示された条件下の実験結果の考察
Table 8－1のテスト結果はFig．8－13に示されるように，Fig．8－13中のline Bにほぼ平行 の直線に点綴とみなすことができた。 line Bは設計線図の特性より，（ 1 m$)\left(\mathrm{P} \rho_{\mathrm{c}} \mathrm{V}^{\prime}\right)$ ＝consi．として点綴したものでこれは実測データの点綴はlineB平行とみなすことができた。 その意味においては，塩化ナトリウム系のTable8－1の条件においては，製品の代表粒径 と装置容積当りの晶析速度との積はほぼ一定であることを示している。Eq．8－3より明ら かなように， I_{4} は m の関数であり，それはすでに線図に示されているが，これによるとm の値が大きい本研究の範囲においてはI4はほぼ一定であるので，（ $1-\varepsilon$ ）• $(\mathrm{d} 1 / \mathrm{dt})_{\mathrm{av}}$ 。もほぼ一定になっていたものと考えることができる。…方，P $\rho_{c} V^{\prime}, ~ 1 m$ との相関につい ては生産速度に基づいて，

$$
\begin{gather*}
\frac{P}{\rho_{c} V}=I_{m}{ }^{3} F v \cdot k_{v} I_{3} \tag{8-4}\\
I_{3}=\left\{1+\frac{2}{m}\right\}^{\frac{3}{m}} m \int_{0}^{\infty} x^{m+2} e^{-x^{m}} d x \tag{8-5}
\end{gather*}
$$

が提出されており，テストデータは定常操作ではEq．8－2およびEq．8－4を満足しなければな らない。 I_{3} についてもmの値がTable 8－4の範囲にあると，近似的に一定と見なすことが できるので，実測値がline Bに平行であることより，

$$
\begin{equation*}
1_{\mathrm{m}}{ }^{4} \mathrm{~F}_{\mathrm{V}} \mathrm{k}_{\mathrm{V}}=\mathrm{const} . \tag{8-6}
\end{equation*}
$$

の関係が得られる。すなわちlineBに平行な操作線が得られる操作においては，P ρ_{C} $V^{\text {• }}$ 変動に対して，

$$
\begin{equation*}
(1-\varepsilon)\left(\frac{\mathrm{dl}}{\mathrm{~d} \theta}\right)_{\mathrm{av}} \mathrm{I}_{3}^{-1}=1_{\mathrm{m}}{ }^{4} \mathrm{FV}^{-\mathrm{Kv}_{\mathrm{I}} 4} \tag{8-7}
\end{equation*}
$$

となる。一方，（ $\mathrm{d} / / \mathrm{dt})_{\mathrm{av}}$ ，および F_{v} ，は操作過飽和度，装置内の流動条件などの影響をそ れぞれ独立に受けることが考えられる。しかし，それらの影響は複雑で定量的関係は得ら れていない。しかし，主装置内の懸濁密度（ $1-\varepsilon$ ）が 0.012 － 0.32 の範囲内においては，装置内で発生した結晶を再溶解することなく循睘すると，Eqs．8－6，8－7の関係がほぼ成立する のではないかと考えられる。塩業の実ブラントのデータワの点経は実験室から得られた直線に比較的よく一致している。この実装置の形式も装置本体は逆円錘型の分級層であり， また，装置内で発生した微結晶は系内を循睘して装置内に戻るようになっていた。このこ とから推測すると，塩化ナトリウム系にわいては装置形式と操作条件をほぼ同一に保つこ とによって小型装置から得られるデータの操作点と大型装置から得られる操作点をほぼ同一特性操作線で示すことができることがあると考えられる。同様のことはアンモニゥム明攀系にても報告されており，その他の系でも同様のことが経験されている。

Fig．8－13に示された点綴より，装置内の平均核発生速度および成長速度を求め，それ をTable 8－4に示す。また，それらを両対数グラフに点綴するとFig．8－14中O印となる。 また，監業各社のデータより同様に算出された値もFig．8－14中に点纓した。これらの点綴より明らかなように実プラントの実測値はほぼ同一の平均過飽和度に対して核発生速度 は小さくなっているが，これは核化速度，成長速度に対するスケールアップ因子その他の影響が複雑に寄与するためで，覞段階では，それらの基䂣データから装置•操作の設計を行うのは容易でないと考えられる。
$8 \cdot 4 \cdot$ b Table． $8-2$ に示された条件下の実験結果の考察
$8 \cdot 4 \cdot \mathrm{a}$ と同様にしてTable $8-5$ の実測結果を点縀すると Fig．8－1．3の○印の点綴のようにな る。この点緅はRun2－1～2－6の範囲ではRun1－1～1－13と異なる勾配の点綴となった。そ こでこの点緅を $\mathrm{m}=4$ のときの値をベースとして相関すると

$$
\begin{equation*}
\frac{P}{\rho_{c} V^{\prime}} 1_{n}{ }^{6.8}=4.8 \tag{8-8}
\end{equation*}
$$

Eq．8－8となる。この式はline Bの相関式と勾配において大幅に異なり，さらにEq．8－7と組み合わせて成立するということは，Eq． $8-7$ は 4.81 m － 5.8 で相関されることを意味する。 Eqs．（8－2），（8－7），（8－8）より得られるEq．（8－9）を装惪队の詳細な機構に基づいて

$$
\begin{equation*}
\left.1_{m} \mathrm{P} / \mathrm{p}_{\mathrm{C}} \mathrm{~V}^{\prime}=4.81_{\mathrm{m}}{ }^{-5.8}=(1-\varepsilon)\left(\frac{\mathrm{dl}}{\mathrm{dA}}\right) \quad \mathrm{I}_{3(\mathrm{~m}=4)}=1_{\mathrm{m}}{ }^{4} \mathrm{Fvk}_{\mathrm{kv}} \mathrm{I}_{(\mathrm{m}}=4\right) \tag{8-9}
\end{equation*}
$$

を検討することは現段階ではできない。しかし，本実験系では，装置より溢流した溶液内 の核ないしその付近の微結晶やはい種は十分溶解しており，このような操作のために Eq．8－8のような相関が得られたものと考える。一方監業Corp．1のデータを○印で示した が，このテストにおいては蒸発缶を溢流した溶液の一部は晶析装置に送ることなく加熱用 の熱交換器に送られており，その意味ではTable 8－1とTable8－2の中間の操作を行ってい ると考えられる。その結果，実験式は $\mathrm{m}=4$ を基準にして

$$
\begin{equation*}
\frac{P}{\rho_{c} V} 1_{m}^{2.2}=0.11 \tag{8-10}
\end{equation*}
$$

となり，詳細は検討できないが，このような考え分をしても矛盾はないのではないかと考 えられる。しかし，Run2－7のデータは図けに点線で示すように勾配は朔になっている。 この操作は生産量を増大すると同時に粒径も增大することを意味し，工業的には望ましい ものであるが，他のデータが取得されたときと比較して現象が大幅に異なると考えられる。操作中にスケーリングは発生し易く，また得られた結晶は粗で，微結晶の付着した凝集晶 になっていた。その意味で通常の工業操作の対象と考えることは望ましくないのでないか と考える。
Table 8－1の操作条件で得られた実測値を点綴した特性操作線を外挿し，Eqs．8－8，8－ 10 の外挿線と比較すると $1 \mathrm{~m}=2.2 \mathrm{~mm}$ ， $\mathrm{P} \quad \rho \mathrm{c}_{\mathrm{C}} \mathrm{V}^{\mathrm{D}}=0.015 \mathrm{hr}^{-1}$ 近傍で交差している。 この点の意味については慎重に検討せねばならないが，分級層型晶析装置の特殊点となり， そこから操作法に固有な特性操作線が引けるのでないかとも予測される。そして，その操作線の勾配は核の除去法の影響を受けると考えられる。又，この特殊点は側濁密度 $(1-\varepsilon)$ やその他操作温度，不純物の存在，流動特性の影響を受けると考えられるので今後の課題 である。
Table 8－2の操作条件に対して得られたデータより，その時の平均結晶成長速度および核発生速度を求め，Table 8－5に示した。またここで得られた値はFig．8－15にも点綴した。 このデータはTable 8－4の値に比較して，同一平均成辰速度に対して核発生速度は小さく なっている。この詳細については今後の重要な課題である。

Fig．8－15 Correlation between nucleation rate and average crystal growth rate $8 \cdot 4 \cdot \mathrm{C}$ Table $8-3$ に示された条件下の実験結果の考察

Table 8－6に示した実測結果P／$\rho \mathrm{cV}$＇および l_{m} をFig．8－13に○印として点綴する。この点綴はFig．より明らかなようにline Aの直線にほぼ平行であった。Table 8－6の l_{m} より相関式としては

$$
\begin{equation*}
\binom{\mathrm{P}}{\rho_{\mathrm{c}} \mathrm{~V}^{\prime}}^{1 \mathrm{~m}}=0.6 \tag{8-11}
\end{equation*}
$$

が得られた。このEq．をEqs．8－6，8，9と比較すると，Table 8－6の実測データはTable 8－4，

$$
\begin{equation*}
\left(\frac{\mathrm{P}}{\rho_{\mathrm{c}} \mathrm{~V}^{\prime}}\right)=\mathrm{kFv} \mathrm{l}_{\mathrm{m}}^{3} \tag{8-12}
\end{equation*}
$$

であるので見かけ上， $\mathrm{P} / \rho_{\mathrm{c}} \mathrm{V}^{\prime}$ と $\mathrm{kF} \mathrm{v}^{\prime}$ は比例関係であることになる。
一方，Fig．8－13の ○印の点綴より常法に従って（ $\mathrm{dl} / \mathrm{d} \theta)_{\mathrm{av}}$ と $\mathrm{kF} \mathrm{v}^{\prime}$ とを求めそれらもTable 8－6に示すとともにFig．8－15に○印として点綴する。Fig．8－15の点綴にはTable 8－4，5 からの点綴および○も示されており，それらを比較すると Table 8－6のデータは分級層型晶析装置から得られるデータのほぼ中央でしかもkF ${ }^{\prime}$＇は $(\mathrm{d} 1 / \mathrm{d} \theta)_{\mathrm{av}}$ に対して比較的ゆるい勾配の相関となっている。そのことは本テストにおいてはP／$\rho \mathrm{c}^{\mathrm{V}}$ 济変化に対して $\mathrm{kF} \mathrm{v}^{\prime}$ も （ $\mathrm{d} / \mathrm{d} \theta \theta)_{\mathrm{av}}$ も共に変化していることを示している。そこで $\mathrm{P} / \rho_{\mathrm{c}} \mathrm{V}^{\prime}$ と $\mathrm{kF} \mathrm{v}^{\prime}$ とを点綴すると， Fig．8－16となりP／$\rho_{c} \mathrm{~V}^{\prime}$ と $\mathrm{kF} \mathrm{v}_{\mathrm{v}}{ }^{\prime}$ が比例するときの相関線と比較すると大きなばらつきがあ った。一方 l_{m} については Eq．2－81より

$$
\begin{equation*}
l_{m}=\left(1+\frac{2}{m}\right)^{\frac{1}{m}}\left(\frac{d l}{d \theta}\right)_{a v}\left(\frac{V}{F}\right) \tag{8-13}
\end{equation*}
$$

の関係がある。Eq．8－13のm，（dl／d $\theta)_{\mathrm{av}}$ ，（V／F）の本テストにおける値はTable 8－6に示され ている。理論的には，mが変わるとFig．2－29の l_{m} 軣に示されるように同じ l_{m} に対しても line Aは異なる。そのため，Fig．8－13に示されるO印の点綴が同一直線にならない。晶析装置内の晶析現象が完全混合状態でしかも凝集することなく成長するとすると，理論的 にm＝1となるが，Table 8－6のmの値が大幅に異なっているのは装置内の現象が理想モデッ からづれているためでないかと考えられる。特に本実験䉓囲では1－ε が小さいために装置内の状態をほぼ同一状態に出来なかったのでないかと考えられるが，m，（dl／d $\theta)_{\mathrm{av}}$ ，V／F， $F_{v}{ }^{\prime}$ ，$P / \rho \mathrm{c}^{\mathrm{V}}$ の総括値としてEq．8－11のように相関されたことはこの整理法の興味ある所である。一方，Fig．8－14，15に示された企業のデータを比較検討するとCorp．6の点経は Fig．8－13では Table 8－4のデータと…致しており，おたFig．8－15では平行になっている しかし，Table 8－5のデー夕のFig．8－15の点綴では急な勾配になっており，Fig．8－13の点綴が比較的急な勾配であり，それがCorp1のデータのそれに近いことは $8 \cdot 4 \cdot$ bで述べたが， Fig．8－15の点綴の勾配も○の点綴の勾配に近い値を示していることは興味深い。このよ うに考えると $(1-\varepsilon)$ をある程度高くすることによってスケールアッブに耐えうるデータが小型装置で得られるものと考える。
この詳細はについては今後の重要な課題である。

Fig. 8-16 Correlation between $\mathrm{P} / \rho_{\mathrm{c}} \mathrm{V}^{\prime}$ and $\mathrm{kF} \mathrm{V}^{\prime}$ obtained from tests in a CMSMPR crystallizer

9．晶析装置•操作の開発（総括）

工業晶析装置内における晶析現象はFig．2－2に示すごとく，理学的理想モデルとは異なっ ている。すなわち，装置内で発生する結晶核はそのまま，あるいはそれより成長した微結晶として，過飽和溶液内で成長している懸濁結晶の成長に寄与する。これらの核化•成長現象については4～7章にかけて一連の研究実験を行つている。これらの研究成果を総括 すると核化•成長速度に影響する因子は多く，それらは複棑に寄与するので現状では核化•成長速度より装置•操作法を設訃することは出来ない。．．しかし，工業操作を考えると目的 の製品結晶に成長させるために可能な結晶成長速度の範囲やその時の装置内の操作条件 （結晶の懸濁密度•流動条件）の範囲は推測出来るようになってきている。また所望粒径の結晶を生産するのに必要な結晶種の生成速度（添加速度）は容易に推算することは出来るが， この必要数になるように装置内の生成速度を制御することは容易でない。しかし，これら の研究成果より，結晶核の発生速度に影響する因子やこれら因子の寄与の大きさについて はかなり明らかになってきており，目的の製品を生産するための操作法•装置形式の選定 に対する取り組み方はほぼ確立されている。以下，これらに基づいて装置•操作の開発法 について検討する。

$9 \cdot 1$ 晶析操作•装置の選定

晶析装置の選定に当っては，回分または連続に対する操作法および装置内流動特性に基 づく装置形式の選定とがある。

$9 \cdot 1$ •a 操作法の選定

回分晶析装置および連続晶析装置の設訃法については2•2で扱ったが，ここではその選定法について検討する。晶析操作の選定に当たつては所望の特性を持つ製品を安定して生産することおよび装置容積あたりの生産性の高いことが重要である。ここではそのおのお のの立場で回分操作および連続晶析の特徵を倹討する。
$9 \cdot 1 \cdot a \cdot i)$ 所望特性結晶製品の安定生座について
○均一粒径の結晶：製品結晶粒径1pはEq．2－33と同様に

$$
\begin{equation*}
1_{\mathrm{p}}=1_{\mathrm{s}}+\int_{0}^{\Theta}\binom{\mathrm{dl}}{\mathrm{~d} 0} \mathrm{~d} 0 \tag{9-1}
\end{equation*}
$$

で表される。一般に $1 \gg 1$ s で，得られる製品結晶が均 $-\cdots$ となるためには $(\mathrm{d} 1 / \mathrm{d} \theta)$ が一定とす ると，すべての結晶の滞留時間 Θ が一定になることが必要である。このような操作は準安

定域内で装置内での核発生がないようにし，最初に添加した種晶のみが成長して製品とし て取り出されるようにすれば可能である。しかし，実際の操作において装置内の核発生を無視するような操作をすることは出来ない。そのため，核発生機構を考え，対応策を考え ることが必要である。一般に準安定域は一次㤥化現象を対象に考えられている。二次核発生に対する準安定域範囲は狭く，その範䀟では特珠な場合以外では工業的に操作すること は出来ない。例へば静置溶液の液表而から静かに蒸発させると，表面で一次核が発生する しかし，この一次核は蒸発速度によっては成長することによって溶液濃度の低下を持たら し，追加一次核の発生を防止することが出来る……方，この核は液表面に静置された状態 で成長すると二次核は発生せず，最初発生した一次核のみを成長させることが可能である この核がある大きさになると重力により溶液内を沈降する。このような沈降は新たな二次核の発生をもたらすもので，この二次核が微結晶に成長する以前に成長した結晶を分離す る必要がある。したがって，このような操作には回分法の方が容易となる。回分操作でも結晶が装置内で懸濁しているとそれによる二次核が発生することが多い。しかし，ここで懸濁している結晶粒径が二次核発生のための最小粒径以下であれば二次核の発生のない均一粒径のものを得ることができる。製品粒径が最小粒径以上であると，操作中に新たな二次核が発生するためにそれを除去しなければならない。ここで生成する微結晶を系外に除去すると均一粗大粒径のものを生産することができる。そのための方法としては微小結晶除去装置を利用するか，操作温度のサイクルや水蒸気の供給により周期的に未飽和状態にす ることによって微小結晶を優先的に溶解することが考えられる。このような操作をしても所定結晶成長のための必要時間はほとんど変わらない。

連続晶析操作ではEq．9－1の θ をすべての取り出し結晶に対して一定とするためには理論的にはピストン流仮定が成り立ち，核発生または種晶添加が装置入り口のみであるとすれば可能である。このような操作のためには直列多段晶所裴置が考えられるが，2段以降の核化を防止するようにすることが必要である。もう一つ方法としては晶析装置の出口で分級操作するか，分級された結晶のみを取り出すようにすることが考えられる。装置からの取 り出し口にふるいを設置することは考えられるが，目詰まりの間題を解决しなければなら ない。通常は湿式分級操作を利用して粗大均——粒径の結晶のみを取り出す方法が用いられ ている。この場合結晶の沈降速度が大きいことが必要で均一微小結晶を生産するためには連続式は容易でない。目安としては沈降速度が1 $\mathrm{cm} / \mathrm{sec}$ ぐらい以上の粒径の結晶に対して は，湿式分級操作を適用することが考えられる。
○安定操作法：晶析特性が明かでない場合，試行錯誤法で回分操作を用いねばならない。 またスケーリングのはげしい場合には生成したスケールを除去しなければならず，スケールを除去す るためには回分操作法の方が便利である。連続操作ではステリーを安定して輸送しなければな らない。また装置内に瞋濁する結晶量も平均して 10% ないしそれ以上の方が操作しやすい。

このような条件を保ちつつ安定操作をするためにはある一定以上の生産量であることが必要となる。この目安となる生産量については1 ton／dayなどの学説はあるが，安定した操作が可能な範囲であることが必要である。
$9 \cdot 1 \cdot a \cdot i i)$ 生産効率について：
装置に懸濁している結晶の最大懸濁密度を同じに保ちつつ結晶の成長速度を等しくなる ように操作し，また結晶核や結晶種は必要量添かされるとするとつぎの関係式が成立する ○定常操作時の連続操作では装置内に懸濁している結晶の全懸濁量W，および全表面積 aconlばはそぞれ次式となる。

一方，回分操作の最大懸濁量 $W_{\max }=\mathrm{N}_{\mathrm{p}} \mathrm{k}_{\mathrm{v}} \mathrm{l}_{\mathrm{p}}^{3(9-4)}$
であり，また回分操作の平均平均表而積 $\mathrm{a}_{\mathrm{batch}}$ は

$$
\begin{equation*}
\overline{\mathrm{a}}_{\text {batch }}\left(\mathrm{l}_{\mathrm{p}}-1_{\mathrm{s}}\right)=\left.\int_{1_{\mathrm{s}}}^{1_{\mathrm{s}}} \mathrm{k}_{\mathrm{s}} \mathrm{~N}_{\mathrm{p}}\right|^{2} \mathrm{dl}=\frac{1}{3}-\mathrm{k}_{\mathrm{s}} \mathrm{~N}_{\mathrm{p}}\left(\mathrm{l}_{\mathrm{p}}^{3}-1_{\mathrm{s}}^{3}\right) \tag{9-5}
\end{equation*}
$$

より

$$
\begin{equation*}
\bar{a}_{\text {back }}=\frac{1}{3} N_{p} k_{s}\left(l_{p}^{2}+l_{p} l_{s}+l_{s}^{2}\right) \tag{9-6}
\end{equation*}
$$

となる。ここでF＇は連続操作の種晶添加速度，N_{P} は回分操作で最初に添加される種晶数， $\mathrm{k}_{\mathrm{v}}, \mathrm{k}_{\mathrm{s}}$ はそれぞれ結晶の体積および表面積形状係数である。そこで
$\mathrm{W}_{\mathrm{t}}=\mathrm{W}_{\text {max }}$ とおくと

したがって， $\mathrm{a}_{\mathrm{cont}}$ と $\mathrm{a}_{\mathrm{batch}}$ との比を S とすると

$$
\begin{equation*}
s=\frac{a_{\text {cont }}}{\bar{a}_{\text {bach }}}=\frac{F^{\prime}\left(l_{\mathrm{p}}^{3}-l_{\mathrm{s}}^{3}\right)}{\left.N_{\mathrm{f}}\left(\frac{d \mathrm{~d}}{\mathrm{~d} \mathrm{\theta}}\right)_{\mathrm{av}}^{\left(l_{\mathrm{p}}^{2}+l_{\mathrm{p}} 1_{s}+1_{\mathrm{s}}^{2}\right.}\right)} \tag{9-8}
\end{equation*}
$$

となり，F＇／N N_{p} を Eq．9－7より求めEq．9－8に代入すると

$$
\begin{equation*}
s=\frac{4 \cdot l_{\rho}^{3}}{\left(l_{p}^{3}+l_{p}^{2} l_{s}+l_{p} l_{s}^{2}+l_{s}^{3}\right)} \tag{9-9}
\end{equation*}
$$

そこで，種晶と製品結晶の粒径比 $1_{\mathrm{s}} / \mathrm{I}_{\mathrm{p}}$ を無次元粒径 x_{1} で表すと

$$
\begin{equation*}
s=\frac{4}{\left(1+x_{1}+x_{1}^{2}+x_{1}^{3}\right)} \tag{9-10}
\end{equation*}
$$

となり，Fig．9－1の関係が得られる。ここで回分操作と連続操作では装置内に懸濁してい る結晶表面積は無次元種晶粒径x1によって異なる，装置内の結晶成長速度はどちらの操作においても同じであるとすると装置の生商速度は想罚絬思の表而積に比例すると考えら れるのでFig．9－1の関係はそのまま装置の生産効率を表していると考えることが出来る。連続操作と回分操作の過飽和度制御の難易を考えると，連続操作は回分操作より容易で， よい結晶製品の生産を考えると，操作のむづかしい回分操作では操作過飽和度を小さくす る安全側に設定する傾向があり，これより考えると連続操作では回分操作に比較してFig． 9－1で示されるより大きな生産能力を期待できる

Fig．9－1 Correlation between S and x_{1}

$9 \cdot 1 \cdot a \cdot \mathrm{ii}$ ）総括：

回分操作か連続操作の選定に当たつては装置の生産性等より，まず連続法を選定する前提で倹討すべきと考える。しかし，連続操作を選定した場合，スケーリングやスラリー輸送の問題から安定操作が可能であるか否の検討および連続操作で所望の粒径や粒径分布の結晶が得られるか否か検討を行い，最終的に最適操作法を選定すべきである。

$9 \cdot 1 \cdot \mathrm{~b}$ 晶析装置形式の選定

晶析装置内には液相および結晶相が存在し，その装置内の状態によって装置形式の分類 が考えられる。晶析装置内の雨相の状態は静置状態と流動状態に分けて考えることができ る。
$9 \cdot 1 \cdot b \cdot i$ ）ステイショナリー晶析装置：
古い晶析装置は静置系で装置壁面上等に結晶を析出させることが多かった。しかし，最近は制御システムの向上によって，小さな過飽和状態で成長結唱を懸濁流動状態に保って操作することが多い。しかし，このような操作では二次核発生を抑制しつつ成長することは ほとんど出来ない。しかし，適度な二次核発生は安定した操作のために必要であるが，系 によって核発生が起こると棈枝状晶等複雑な結晶の所出となり，所望の形状など目的とす る結晶が得られないことがある。このような場合，静置過飽和溶液内で晶析させることが ある。このような場合，結晶成長が認められるのは伝熱面など特殊な場所であり，そこに スケーッ状に生成することも多いので，結品の収り忙しを宮易にしたり，装置容積当りの生産速度を高く保つような工夫が必要であるい
$9 \cdot 1 \cdot b \cdot i i)$ ダイナ トンクリ晶析装置：
晶析装置内で成長する結晶を側濁流動状態に保って操作する型式の装置である。この装置内に存在する結晶と溶液の状態は均一混合状態と…様分布のある分級状態に保つことの 2通りがあり，この状態を組合せることによってTable 2－4に示すごとく，運搬層型，完全混合型，分級層型（1），（2）の4通りに分けることが出来る。この各装置モデ北対する設計理論は $2 \cdot 2 \cdot b$ で扱われているが，これらの装置型式の非定に対しては次のように考えられ る。そこで分類された装置の特徵は
○運搬層型：装置内に賏濁する結晶は添加種晶から製品となるものの範囲で装置内に均一 に分散している。溶液の過飽和度は装置内に一様な分布があり，結晶取り出しは分級され均一所望粒径のもののみが得られる。装置内の平均過飽和度は最大値と最小値の対数平均 で表される。
○完全混合型：結晶•溶液とも装置内では均一混合状態に保たれ，製品結晶は装置内に賏濁しているものと同じものが排出される。
○分級層型（I）：溶液と結晶は向流に流れ，混合はビストン流になっている理想モデル結晶の懸

濁状態は流動層の流動特性に従って装置内に出い方向に分布があり，塔底部と同じ粒径分布の結晶が排出される。
○分級層型（II）：分級層型（I）とほぼ同じであるが，溶液過飽和度は装置内で均一になるよう に工夫された理想装置である。分級層型（I）の改良による最も効率のよい装置。上記4型式の選定に当たっては結晶の沈降状態速度によってどの装置型式のモデルに合わせ やすいかを考えて選定する。大きく分けると上記2型式は混合型，他の2型式は分級型と考えることが出来，装置選定の目安としては混合型は結晶の沈降速度が $1 \mathrm{~cm} / \mathrm{sec}$ 以下，分級型は $1 \mathrm{~cm} / \mathrm{sec}$ 以上と考えられる。しかし，装置内ステリー循噮用かくはん翼も工夫したり過飽和の生成法を変えるとこの基準値は変わるので，その詳細はその都度検討する必要があ る。
9.2 晶析装置の検討，開発のための晶析テストと取得データの適用について

晶析装置を選定し，晶析プロセスを開発するためには，所定形状，品質の結晶を生成せね ばならず，そのような結晶の生成条件の選定および生廒のための装置を設定しなければな らない。そのためには所定の結晶生成のためのラボテスト，おょび結晶核の発生速度および成長速度測定のためのテストおよびこれらの基䂣データに基づく装置•操作の設計をしなけれ ばならない。

9•2•a 所定結晶生成のためのラボテスト
$9 \cdot 2 \cdot a \cdot i)$ 過飽和の生成法
結晶は過飽和溶液で生成し，成長する。このような過飽和の生成法としては冷却，蒸発 および反応による方法があり，理論的にはどの方法を用いても液組成が同じであれば同一条件で結晶を析出させることができる。しかし，実際には溶液内の過飽和度の分布が異な るために過飽和の生成によっても析出する結晶が異なるように見えることがある。工業操作を考えると冷却式では広い伝熱面樍を用いないと冷却器表面で大きな過飽和を生成しや すく，そこでスケーリングを生成しやすい。また伝熱面近傍で過剩な2次核を発生しやすくな ることがあり，このような場合には安定操作で良質な結晶を生成することはできない。そ のような場合蒸発冷却法（蒸発潜熱利用）を用いることがあり，この操作で晶析工学の立場 では蒸発式と同一に扱ってよい。蒸発式でもスケッリングや過剩核の発生に注意しなければな らないが，工業的には他の操作時より扱いやすい。し し し し 実験室的には小規模であるこ とより冷却式の方が操作が容易である。冷却式で得られたデータと蒸発式で得られたデータ は厳密には同一視できない場合が多いと考えられるが，装置内の局所的最大過飽和度と最小過飽和度およびその局所的にみた装置内ステリの流動状態をほぼ同一に保つと，過飽和生成法による差異は小さいと考えられる反応晶所においては供給溶液の反応によって過飽和

状態になるが，ここで生じる過飽和度の最大値と最大値近傍に保持されている時間の影響 が大きい。この混合状態が生成結晶の品質に大きな影響を与えるので，他の物理的方法に よって析出する結晶と品質が異なることが多い。これらのことに基づいて操作条件を検討 しつつ生成結晶の品質および操作の経済性を考慮して過飽和の生成法を決定しなければな らない。

$9 \cdot 2 \cdot a \cdot i i)$ ラボテスト装置

結晶を生成させる装置としては静置された過飽和溶波内より結晶を発生，成長させるステ
成長させるダイナミック型がある。このような操作においては第一段階では結晶に対して回分式で操作過飽和度を出来るだけ…定に保つように操作し，所定の結晶を生成するようにす る。この一連のテストで所望の結晶が得られれば，その操作条件で操作すれば工業的でも同様な結晶は得られる。この場合用いられるラホ＂装置は9•1で選定された装置形式の主要因子は包含したモデル装置を選定することが必要である。

$9 \cdot 2 \cdot \mathrm{~b}$ 晶析速度実測のためのラホ＂装置

晶析装置•操作設計のための晶析速度の測定法としては側濁多結晶の存在しない場合の実測法と顛濁多結晶の存在する場合の実測法がある。この兩者の実測法にはそれぞれ特徴 があり，それぞれの目的に合致あいた実測法でデータを取得する必要がある。
$9 \cdot 2 \cdot b \cdot i)$ 賏濁多結晶が存在しない場合の実測法
 び結晶核の発生速度に対する研究を行っている。結晶の成長をイオソ等の規則正しい配列に基づく理想的現象と考え，このモデルがほぼ適用できる結晶成長速度や結晶核の発生速度 を対象とする研究は現象を理解するべースの砩究として広く行われている。この現象は必 ずしも工業装置内のものとは一致しないが，理想モデルに近い良質な結晶を生成するとき の晶析速度の実測とそれに影響を与える因子との相関を求めるのに有効である。ここで得 られた晶析速度に基づいて晶析装置•操作を設計することは出来るが，それは一つの理想的晶析装置で，工業晶析装置の目標として評侕される
$9 \cdot 2 \cdot \mathrm{~b} \cdot \mathrm{ii})$ 懸濁多結晶が存在する場合の実測法
第7章，第8章で扱われた一連の昆所実験でT．業装罭の結毘愻濁密度に近い状態でテストさ れている。結晶は多結晶贔濁状態で成長すると，そこで発生する2次核が複雑に影響して おり，工業装置で得られる晶析速度に近い値となっている。これらについてはFig．8－ 14，15をみると明かである。そのために工業装置•操作の設計や倹討をするために必要な晶析速度を実測するにはこれらの装置を参考にするとよい。これらのラボテストは結晶成長 による溶液濃度低下を防止するために溶液を定常的に供給する。成長する結晶については

回分操作として均一結晶による晶析速度を実測する方法と連続晶析操作の定常時の精径分布の実測による方法とがある。前者は操作時間内の粒径変化より求める方法であり，後者 はFig．2－29の線図を用いる方法であり，いづれも第7䇂および第8章を参考にすればよい。 $9 \cdot 2 \cdot b \cdot \mathrm{ii}$ i）核化•成長速度に基づく晶析装置•操作の設計法

晶析装置内の結晶核発生速度Fv＇と結晶の平均成長速度（ $\mathrm{dl} / \mathrm{d} \theta$ ）avが予測されると，
Fig．2－29を用いることによって生産される結晶粒径とそれを所定量生産するに必要な装置
 テストの操作条件を参考に設定すると（ $\mathrm{d} 1 / \mathrm{d} \theta) \mathrm{av}$ および $1-\varepsilon$ より，第 2 操作点 D は決定できる。 この点DよりlineBに平行線を引く。…方，品斦する絬開の形状係数kと F_{v} よ より C^{\prime} を決定 し，製品の粒径分布を示すEq．2－77のm値より点Cを求めると，この点Cとcomplimentary lineより点Bが得られる。この点Bに垂直線を引き点Dより引かれたline Bに平行線との交点，すなわち第1操作点Aが求まる。この点Aをline Aに平行な線とmをパラトーターとする1 m軸とより，この晶析速度で得られる粒径 1 m が予測される。装置容積当りの晶析速度 $\mathrm{P} / \rho{ }_{c} V^{\prime}$ はP／$\rho{ }_{c} V^{\prime}$ 軸より求まるので，この値より P を生㢀するに必要な容積 V^{\prime} が決定で きる。ここでラボテストで得られる（ $\mathrm{dl} / \mathrm{d} \theta)_{\mathrm{av}}$ より工業装置内で予想される平均結晶成長速度 $(\mathrm{dl} / \mathrm{d} \theta)_{\mathrm{av}}$ の推算法の確立や装置形式および流動条件とmとの関係を明らかにする必要が ある。
9.3 パイロットプラントテストに基づく連続晶析装置の設計

核化•成長速度より工業装置を開発する方法について9•2に示したが，まだ開発の段階 である。その意味では連続パイロットプラットテスト結果による工業装置•操作の開発が必要であ る。晶析装置開発のためのバイпットブラットに対しては9•1で扱った方法で装置形式を選定し， その装置特性を有したバ价ト装置を組み立て，それによる連続テストによる定常操作洔のデ ータを取得する。第8章ではこの万法で塩化ナトリウムの楽师テストを行っているが，同様の方法 で定常操作時の晶析速度と製品結晶の粒柊分布およびそのときの装置内結晶の平均懸濁密度1－ε の実測よりFig．2－29の第一操作点Aが得られる，この点Aを点綠することによって特殊操作線が得られ，その操作線を州いると製品粒柊lmに対するP／$\rho \mathrm{c}^{\mathrm{V}} \mathrm{V}^{\prime}$ が決定できるの で同形式の装置の大きさが決定できる。9•2のiii）の手続の逆にたどると点AよりkFV＇お よび（ $\mathrm{dl} / \mathrm{d} \theta)_{\mathrm{av}}$ も決定できる。この $\mathrm{kF} \mathrm{v}^{\prime}$ および $(\mathrm{d} 1 / \mathrm{d} O)_{\mathrm{av}}$ は所望の製品粒径の結晶を生産 するためにここで設計した連続晶析装置内の核化•成長速度であり，このような晶析速度 で操作できないと月的の製品を生産することはできない。設訃された装置内で期待される核化•成長速度に操作するためには装置内の結晶懸濁密度や流動特性を調整する必要があ る。これらに参考となるデータはまだ多数発表されていないが，扐明ばん系い や NaCl を対象にした報告 ${ }^{2.3}$ ）はなされている。

9•4 最適連続晶析操作法の開発

最適晶析装置•操作法の定義は一概に決めることはできないが，ここでは所定特性の製品を装置容積あたりの高い生産量を示す装置•操作法とする。ここで結晶の特性について は結晶の粒径および粒径分布とその他の物理的性質に分けて考え，後者は主として所定の結晶成長以下で操作すると得られる可能性が大で，その他 pH ，温度，添加物等種々の条件を加味しなければならないが，それらについてはまだ末知な要素は多い。しかし，これらの
 であるとする。製品結晶の粒径分布については装置肉の混合特性および分級操作特性によ
布特性が表されることが多く，装置形式とmの値については安定した状態で操作ではある程度の相関が考えられている。製品結晶粒径の表示に対しては，結晶の重量基準，個数基準で表される粒子特性数 1_{w} や 1^{*} が，またモード径に対しては 1_{m} が用いられる。これら 1_{W} ， 1^{*} ， ${ }^{1} \mathrm{~m}$ の間の相関はEq．2－81およびEq．2－29にて表されている。そこで実用的に意味があると考えられる 1 m および $\mathrm{P} / \rho_{\mathrm{c}} \mathrm{V}^{\prime}$ とによって装置の効率を考えることができる。連続晶析操作 の定常時にはFig．2－29に操作点を点綴することができる。いまこの操作点を点Aで表すと する。以下もの点を基準に最適速続毘析装䍚の開発江について検討する。ここでは生産量 は単位装置容積当りの生産量で表す。

Fig．2－29と同じ線図をFig．9－2に示す。ここで製品粘径を保持したまま生産量を増加 させると，第一操作点はline Aに平行に点Aより右上方に A_{1} に向かって移動する。この操作で $(1-\varepsilon)$ を点 A の操作と同じに保つと D は D_{1} となりその封の平均結晶成長速度は E_{1} とな る。また修正核発生速度は $\mathrm{B}_{1}, ~ \mathrm{C}_{1}$ を経て C_{1}＇となり，核発生速度も成長速度も高くなる。点Aの操作に対応する平均結晶成長速度Eは点 A_{1} に対応した E_{1} にならねばならない。装置内の局所的最大結晶成長速度は系に対して限定されると考えられる最大成長速度（ dl / d $\theta)_{\text {max }}$ を越えることはできない。現在この限界値は明らかでないが，第7章， 8 章の実測デ ータからは限界値が存在することは容易に推測される。この推測される限界最大成長速度 （ $\mathrm{d} 1 / \mathrm{d} \theta)_{\text {max }}$ 以内に保ったままで平均成長速度（ $\left.\mathrm{d} 1 / \mathrm{d} \theta\right)_{\mathrm{av}}$ を大きくすることが製品結晶の生産能力を増加させるために必哭である。（dI／d0）avを人きくするために裴置内の局所的成長速度を（ $\mathrm{dl} / \mathrm{d} \theta)_{\text {max }}$ を越えるようになると製品結品の品質が低下すると考えられるので， このようなことのないような装置形式，操作条件を見いだす必要もある。装置内の結晶䖲濁密度1－ε を增大すると点A 1 を通るline Bに平行な㥀線で示されるように平均結晶成長速度は E_{1} より E に近付けることが可能である。そのことは局所的最大成長速度を小さく保つ ようにすることがElより容易になる。（ $1-\varepsilon$ ）を D_{1}＇まで增人させることが可能であると平均結晶成長速度はEに保ったままで操作することが可能となる。一方装置内で必要とする結晶種はC＇からC C^{\prime} となる。 $D_{1}, ~ E_{1}$ の操作条件の変化に対して核発生速度が変化すること

が考えられるが，この変化が $\mathrm{C}^{\prime} \cdots \mathrm{C}_{1}$＇となれば，製品粇往を一定に保ったまま生産量を増大させ得ることになる。しかし， $\mathrm{D}_{1}, \mathrm{E}_{1}$ に対応する装置内の平均核発生速度が C 1 と異な ると，この差異をなくすために必要結晶種を添加するか，過剩核が発生した場合にはそれ らを溶解除去しなければならない。 装置内の眦濁密度 $1-\varepsilon$ と平均結晶成長 E を一定に保 ったまま核発生速度を增大するとA点はDA線上を A 3 に移動する。そのことによって生商量を増大することができるこの操作では装置内で結晶となる種晶数の増大によって䊏栙 が小さくなり，そのために装置内に懸濁する絬出の表而䅡が增人するためにこの装置内で

操作条件の変化方向によっては点 A は $\mathrm{A}_{2}, \mathrm{~A}_{4}$ のように変化することも考えられる。その場合，（ $1-\varepsilon$ ），$C^{\prime}, ~ E$ が点 A_{i} に対心した $(1-\varepsilon)_{i}, C_{i}{ }^{\prime}$ ，$E_{i}{ }^{\prime}$ であることが必要で，このような $(1-$ $\varepsilon)_{i}, ~ C_{i}{ }^{\prime}, ~ E_{i}{ }^{\prime}$ を見いだせればそのような安定操作をすることが可能である。工業装置にお
置•操作であり，このような装置•操作を開発するための方问は明らかになったと考えら れる。

References

1）Aoyama，Y．，G．Kawakami，T．Mukaida and K．Toyokura，Indusirial Crystallization 81，edited by S．J．Jancic and E．J．deJong， North－Holland Pub．，p．199（1982）
2）日本海水学会誌，特集号…晶析シンボジウムー，44卷，1岸，P．1‥90（1990）

10．結言

塩化ナトリウムに関する晶析晶析技術は炤和20年代に所究され，その成果に基づいた晶析装置は広く国内で実用されたいる，しかし，眧和30作代の技術的新を機に化学工学が発展
業装置内の現象理解に適用して研究されてきたが，装置内の現象は複雑で新たな工業晶析理論の展閉が必要となり，それについての硳究が体系化されてきた。それを第2章に整理 した。これをふまえて，本研究では溶液物吽，核化，成長現象，装置内現象と研究を進め最後にそれに基づく新しい思析装置•操作闌炎沚の提害へと発展させた。海水学会には海水利用工学研究会があり，その作業委員会としてほに篮業各社のスタッフによって構成され ているOJT委員会が活動している 現在このOJT委員全では監化トトリウム結晶を対象に新し い晶析技術の展開を行っており，この委員会の活動はじめ，広く工業晶析技術の発展に本 ブロジェクト研究成果が貢献することを桪待する

