Continuous Recovery of Iodide from Seawater Using a Flow-through Cell Composed of Selective Carbon Fiber

Masaharu Nakayama, Ryuichi Marukawa, Kanon Suzuki

Graduate School of Sciences and Technology for Innovation, Yamaguchi University

Summary

Different electrode substrates were immersed in an aqueous MnSO₄ solution containing hexadecylpyridinium chloride (HDPy⁺Cl⁻) and then polarized at a constant potential of +1.0 V (vs. Ag/AgCl). Thus, a thin film of layered MnO₂ sandwiching HDPy⁺ was deposited with the same amount on carbon cloth with low surface area (CC), indium tin oxide glass (ITO), and activated carbon cloth (ACC). Adsorption capabilities toward iodide ions (Γ) of the resulting HDPy/MnO₂ modified electrodes were compared. As a result, the sorption amount increased in the order of HDPy/MnO₂/ITO \approx HDPy/MnO₂/CC << HDPy/MnO₂/ACC. This result is associated with the use of HDPy/MnO₂/ACC, I⁻ ions can be adsorbed both in the HDPy/MnO₂ film and on the underlying ACC. In order to examine the validity of the modified ACC electrode in seawater, its adsorption behavior toward Γ was monitored in the presence of 0.5 M NaCl. Interestingly, the HDPy/MnO₂/ACC adsorbed almost the same amount of Γ as that observed for HDPy/MnO₂/CC or HDPy/MnO₂/ITO in the absence of NaCl. This suggests that the HDPy/MnO₂ film can adsorb Γ ions even in the presence of Cl⁻.

When the HDPy/MnO₂/ACC after adsorbing I⁻ was polarized anodically in a solution containing supporting electrolyte alone, the modified ACC could be regenerated. Specifically, the anodized electrode showed the same adsorption amount of I⁻ as that of the original one. This process was repeated at least three times.

A flow-through cell was assembled with ACC and HDPy/MnO₂/ACC electrodes. Here, a test solution containing I⁻ and supporting electrolyte was cycled in a closed flow system equipped with the cell to achieve continuous recovery and release of I⁻ ions by controlling the voltage between the two ACCs. However, the reversibility was poor, leaving much room for improvement.