Effects of Salt, Carbohydrate, and Their Mixture on the Collapse and Viable Cell Count of Freeze-Dried Lactic Acid Bacteria

Kiyoshi Kawai

Hiroshima University

Summary

It is known that structural collapse occurs when freeze-drying temperature is higher than freeze-concentrated glass transition temperature ($T_{\rm g}$ '). Trehalose is a good protectant for freeze-dried lactic acid bacteria (LAB), but structural collapse occurs readily during freeze-drying in spite of relatively high $T_{\rm g}$ '. As the reason, it was suggested that co-existed materials such as phosphate buffered saline (PBS) and LAB reduced the $T_{\rm g}$ ' of trehalose. The purpose of this study was to understand effects of PBS and LAB on the $T_{\rm g}$ ' of trehalose. In addition, effect of structural collapse on the survival rate of freeze-dried lactic acid bacteria was investigated. The $T_{\rm g}$ ' of sample was investigated using a differential scanning calorimetry. Trehalose and PBS aqueous solution samples showed freeze-concentrated glass transition and eutectic, respectively. In the case of trehalose-PBS aqueous solution sample, eutectic of PBS was prevented by trehalose, and the $T_{\rm g}$ ' decrease with increase in PBS content. There was no effect of LAB on the $T_{\rm g}$ ' of trehalose. The $T_{\rm g}$ ' change was summarized as a $T_{\rm g}$ '-curve in trehalose-PBS pseudo binary system. The $T_{\rm g}$ ' of PBS was predicted to be -78 °C. On the other hand, structural collapse occurred when the sample was freeze-died at much higher temperature than $T_{\rm g}$ '. There was negligible effect of structural collapse on the survival rate of freeze-dried LAB. From these results, it was suggested that biological stability of LAB could be maintained if there was no re-crystallization of trehaose induced by structural collapse.