Functional Analysis of Magnesium Efflux Transporters Localized to the Plasma Membrane and Intracellular Vesicles

Akira Kato

Tokyo Institute of Technology, Center for Biological Resources and Informatics

Summary

Marine teleosts live in water containing ~50 mM Mg^{2+} , thus they are at the risk of exposure to excess Mg^{2+} . To maintain plasma Mg^{2+} concentration at 1-2 mM, marine teleosts secrete Mg^{2+} into primary urine and excrete final urine that contains ~150 mM Mg^{2+} . From analyses of the kidney of marine teleosts, we identified solute carrier family 41 member 1 (Slc41a1) and cyclin and CBS domain divalent metal cation transport mediator 3 (Cnnm3) as Mg^{2+} efflux transporters, and proposed a molecular model for Mg^{2+} secretion by the proximal tubule of marine teleosts. Interestingly, Slc41a1 and Cnnm3 are localized to intracellular vesicles and basolateral membrane, respectively. To compare Mg^{2+} efflux system between human and fish at molecular level, we developed methods to analyze the activities of Slc41 and Cnnm Mg^{2+} concentration, whole Mg^{2+} content, and Mg^{2+} -dependent membrane current by ion-selective microelectrode, inductively coupled plasma mass spectrometry (ICP-MS), and two-electrode voltage clamp, respectively. These methods are useful to identify and characterize Mg^{2+} -efflux activities of Slc41 and Cnnm families in human and fish.