Physiological Role of the Two-Pore Domain K⁺ Channel K_{2P}5.1 in T Cells and Novel Strategy to Regulate K_{2P}5.1 Activity by Pre-mRNA Splicing Inhibition

Susumu Ohya, Hiroaki Kito

Kyoto Pharmaceutical University

Summary

The two-pore domain K^+ channel $K_{2P}5.1$ is as a possible therapeutic target for autoimmune and inflammatory disorders and cancers. $K_{2P}5.1~K^+$ channel plays an important role in regulation of Ca^{2+} signaling in T lymphocytes and cancer cells. However, the lack of selective $K_{2P}5.1$ blockers has led to difficulties conducting experimental studies on $K_{2P}5.1$ K⁺ channel. First, we elucidate the pathological significance of the $K_{2P}5.1$ K⁺ channel in inflammatory bowel disease (IBD). Significant levels of increase in both expression and activity of K_{2P}5.1 K⁺ channel were observed in the CD4⁺ T cells of the IBD model. The knockout of K_{2P}5.1 in mice significantly suppressed the disease severity in the IBD model. These suggest that dysregulated $K_{2P}5.1 K^+$ channel may stimulate the Th1 imbalance in IBD, and provide evidence for K_{2P}5.1 K⁺ channel as a potential therapeutic target for IBD. Second, we identified an N-terminus-lacking, novel splicing isoform of $K_{2P}5.1$ K⁺ channel, $K_{2P}5.1B$ from the human lymphoid tissues. In a heterologous expression system, $K_{2P}5.1B$ inhibited the plasma membrane trafficking of $K_{2P}5.1A$. The K_{2P}5.1 activity was significantly suppressed by K_{2P}5.1B-overexpression in human leukemia K562 cells, resulting in the prevention of cell viability. A pre-mRNA splicing inhibitor, pladienolide B significantly enhanced the expression levels of K_{2P}5.1B without changes in those of $K_{2P}5.1A$ in K562 cells, resulting in decreases in the $K_{2P}5.1$ activity. These suggest that the pre-mRNA splicing mechanism underlying the posttranscriptional regulation of K_{2P}5.1 K⁺ channel may be a new therapeutic strategy for inflammatory disorder and cancers. The target-oriented development of pre-mRNA splicing inhibitors is expected as a novel strategy of drug development for K_{2P}5.1 K⁺ channel