Development of Li Ion Sieves Using NaCl-Based Flux Growth Method

Fumitaka Hayashi, Katsuya Teshima

Shinshu University

Summary

Selective lithium uptake from sea water and lake brine is an important challenge in energy and environmental science. $H_{1.6}Mn_{1.6}O_4$ with pseudo-spinel type structure is a highly selective adsorbent for Li ions, but it is difficult to prepare large, highly crystalline $H_{1.6}Mn_{1.6}O_4$ crystals with porous structure due to its thermodynamic metastability. Herein we demonstrate simple chemical processes that transform flux-grown, idiomorphic orthorhombic LiMnO₂ (o-LiMnO₂) cuboids of micrometre size into hierarchically structured $H_{1.6}Mn_{1.6}O_4$ rods. We have optimized the flux growth conditions such as the Mn source, holding temperature, and solute concentration, in order to yield large, single phase o-LiMnO₂ particles. The use of MnO under very low solute concentration (1 mol %) and high temperature (1,000 °C) is critical to obtaining the single phase, idiomorphic o-LiMnO₂ cuboids. The metastability of o-LiMnO₂ is confirmed by *ab initio* density functional theory calculation in comparison with other lithium manganates such as LiMn₂O₄ and Li₂MnO₃. The successive calcination and acid treatment allow the transformation of o-LiMnO₂ into $H_{1.6}Mn_{1.6}O_4$ rods with porous structure. The resultant $H_{1.6}Mn_{1.6}O_4$ shows high Li⁺ adsorption capacity (~5.6 mmol g⁻¹), high Li⁺/Na⁺ selectivity, and good durability compared with existing $H_{1.6}Mn_{1.6}O_4$ adsorbents.