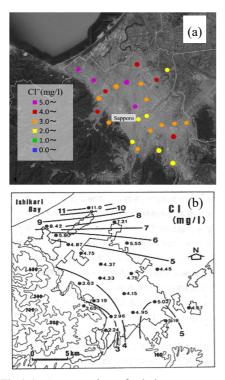
Effects on Steel Structure with the Increasing of Anti-Freezing Salt Spraying


Izumi NOGUCHI¹, Takashi YAMAGUCHI¹, Jiro TSUJINO²

¹Hokkaido Research Organization, ²Hokkaido Electric Power Co..Inc.

Summary

Suspension of road heating system and intensification of anti-freezing salt spraying have been adopted as measures to save energy and reduce CO₂ emissions. Although anti-freezing salt spraying is important for traffic safety, it needs to be controlled to ensure environmental conservation and improve the service life of infrastructure. Therefore, we conducted a survey on snow-covered components in urban sites (Sapporo-predominantly anti-freezing salt spraying area), and rural and remote sites (predominantly sea salt area) to estimate the influence of anti-freezing salt spraying. Additionally, we also estimated the deposition of salt on chin-up bars in school playgrounds in Sapporo during winter.

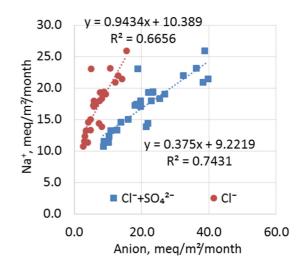

Snow-cover samples and samples from chin-up bar were collected from 26 school playgrounds in Sapporo. As shown in **Fig. 1-1**, Cl⁻ concentrations were similar to survey results of 1980, before anti-freezing salt spraying was adopted (Suzuki, 1985). Additionally, a study of variation in Cl⁻ concentration with distance from the coast across Hokkaido and in Sapporo revealed that the effects of anti-freezing salt spraying were not distinguishable. In contrast, salt deposition on chin-up bars showed excessive Na+ compared to Cl-. This phenomenon can be explained by the release of HCl following a chemical reaction with H_2SO_4 derived from SO₂ during repetition of wet and dry conditions, and is described by the following equation.

Fig.1-1. Concentration of Cl⁻ in snow-cover samples. (a) This results, (b) Suzuki, 1985.

 $2NaCl + H_2SO_4 \rightarrow Na_2SO_4 + 2HCl \uparrow$

Therefore, as shown in **Fig. 2-1**, the correlation between Na^+ and $Cl^-+SO_4^{2-}$ was stronger than between Na^+ and Cl^- .

Fig.2-1. Deposition amounts of Na⁺ vs Cl⁻and Cl⁺+SO₄²⁻. (Deposition amounts for bar, $28mm\phi$)