Cell-Physiological and Systems-Biological Study on Mitochondrial Na⁺ Dynamics

Satoshi Matsuoka, Ayako Takeuchi

Faculty of Medical Sciences, University of Fukui

Summary

To clarify the coupling between mitochondrial and cytoplasmic Na⁺ dynamics, we performed time-lapse imaging of cytoplasmic and mitochondrial Na⁺ using SBFI and CoroNaRed, respectively, in A20 B lymphocytes, and created a mathematical model of mitochondrial ion dynamics and energy metabolisms using object-oriented programming method. We first confirmed the mRNA expressions of mitochondrial Na⁺-HCO₃⁻ cotransporter (SLC4A7) and mitochondrial Na⁺-Ca²⁺exchanger (NCLX) in A20 B lymphocytes and HL-1 cardiomyocytes. In A20 B lymphocytes, an NCLX inhibitor CGP-37157 did not significantly affect cytoplasmic Na⁺ (SBFI fluorescence), while a Na⁺-HCO₃⁻ cotransporter inhibitor S0859 slightly increased cytoplasmic Na⁺. It was speculated that mitochondrial Na⁺ transporters make little impact on cytoplasmic Na⁺. The inhibition of plasma membrane Na⁺-K⁺ ATPase by ouabain induced increases of both cytoplasmic and mitochondrial Na⁺ (CoroNaRed fluorescence). CGP-37157 suppressed the ouabain-induced increase of mitochondrial Na⁺, suggesting a contribution of NCLX to Na⁺ influx into mitochondria. S0859 markedly increased mitochondrial Na⁺, suggesting that mitochondrial Na^+ -HCO₃⁻ cotransporter functions as a Na^+ extruder. We successfully created a mathematical model of mitochondrial ion (H⁺, Na⁺, Ca²⁺, K⁺) dynamics and energy metabolism under the conditions that mitochondrial CO₂ production and processing are not considered. This model reproduced well experimental data. The above findings suggested that cytoplasmic Na⁺ influences mitochondrial Na⁺ while mitochondrial Na⁺ little affects cytoplasmic Na⁺. This is probably due to a small volume ratio of mitochondria to cytoplasm, approximately 8%. Mitochondrial Na⁺-HCO₃⁻ cotransporter was suggested to function as a Na⁺ extruder, indicating HCO₃⁻ extrusion out of mitochondria. The Na⁺-HCO₃⁻ cotransporter may be involved in processing vast amounts of CO₂ produced by mitochondrial metabolism. Mitochondrial Na⁺ dynamics should be reexamined in terms of mitochondrial metabolism.