The Role of Sodium-Dependent Renal Acetylcholine Release in Hypertension

Shuji Shimizu, Toru Kawada, Tsuyoshi Akiyama

National Cerebral and Cardiovascular Center

Summary

Background: Acetylcholine (ACh) activates endothelial nitric oxide synthesis, causing endothelium -dependent vasorelaxation in renal arteries. Because renal vasodilatation in response to exogenous ACh is attenuated in hypertensive rats, there may be a relationship between the progression of hypertension and endogenous renal ACh release.

Purpose: To clarify the mechanism of endogenous renal ACh release and the role of renal ACh in hypertension, a microdialysis technique was applied to the kidney.

Methods: A microdialysis probe was implanted into the renal cortex of α -chloralose and urethane anesthetized rabbits and was perfused with the Ringer's solution containing eserine (100 μ M) and various pharmacological agents. When high potassium (200 mM), high sodium (500 or 900 mM), Na⁺/K⁺-ATPase inhibitor (ouabain 100 μ M), and epithelial Na⁺ channel blocker (benzamil 300 μ M) were locally administered through the probe, dialysate samples were collected. Dialysate ACh concentrations were analyzed using high-performance liquid chromatography.

Results: High potassium never increased renal ACh release $(1.0 \pm 0.2 \text{ to } 1.0 \pm 0.3 \text{ nM}$, not significant). High sodium significantly increased dialysate ACh concentrations in a concentration-dependent manner (500 mM: 1.2 ± 0.4 to 2.4 ± 0.4 nM, P <0.05; 900 mM: 1.1 ± 0.3 to 5.0 ± 1.1 nM, P <0.01). Ouabain significantly increased dialysate ACh concentration $(1.2 \pm 0.2 \text{ to } 2.2 \pm 0.3 \text{ nM}, \text{ P} <0.01)$. Benzamil significantly decreased dialysate ACh concentrations in both baseline and high sodium (900 mM) conditions (benzamil, P <0.01; high sodium, P <0.01; interaction, P <0.01 by two-way ANOVA).

Conclusions: Because high potassium-induced depolarization never increases ACh release, endogenous renal ACh release is mainly dependent on non-neuronal mechanism. An increase in intracellular sodium level enhances this non-neuronal ACh release. Endogenous renal ACh may act as a renoprotective agent against high sodium conditions.