Development of a Monitoring Method of Salinity Level in Lowland Swelling Heavy-Clays

Hideki Miyamoto¹, Masaaki Uemura², Ty P. A. Ferré³

¹ Saga University, ² Graduate School of Agriculture, Saga University, ³ University of Arizona

Summary

Time domain transmissiometry (TDT), a method of measuring transmitted broadband signal in microwave frequency, has been drawing a lot of attention more than ever as an alternative method to monitor water content (*w*), salinity level, and void ratio (*e*) in heavy-clays.

To establish their coupled monitoring method by applying TDT, we measured TDT waveforms of step-pulse transmitted through fluid media, such as ethanol-water mixtures and NaCl solutions with different electrical conductivities, using digital TDT sensors with serial/digital interface at 1200 baud (SDI-12), and verified the response of travel time and amplitude of the step-pulse to apparent permittivity (ε_{TDT}) and electrical conductivity (σ_{TDT}) of the media. Although the determination of ε_{TDT} and σ_{TDT} of an extremely high-conductive media (≥ 5.0 dS m⁻¹) was not completed due to the inadmissible loss of the transmitted step-pulse, we successfully determined both properties by TDT in moderate-conductive media (≤ 5.0 dS m⁻¹).

The pre-established approach for the fluid media was applied to the measurement of ε_{TDT} and σ_{TDT} of kaolinite-water mixtures with different *w*. The ε_{TDT} and σ_{TDT} of the mixtures were quite sensitive to the changes in *w* and empirical expressions of ε_{TDT} vs. *w* and σ_{TDT} vs. *w* were demonstrated. Although further investigation on the estimation of *e* for various natural heavy-clays are required, we believe that the TDT would be a more convenient method than time domain reflectometry (TDR) to simultaneously monitor *w*, salinity level, and *e* in heavy-clays.