No. 1114

Development of Conversion and Storage Methods of Hydrogen Energy into Formic Acid Using Sub- and Supercritical Aqueous Solution of Sodium Chloride

Ken Yoshida

Department of Chemical Science and Technology, Faculty of Engineering, University of Tokushima

Summary

Control of the decomposition paths of HCOOH into CO and CO₂ is desired for the utilization of formic-acid intermediate in the water-gas-shift reaction for the production and storage of hydrogen energy. I demonstrated the selective path control of the HCOOH decomposition into CO and CO₂ by taking advantage of the hybrid use of ZnCl₂ and NaCl. The NMR analysis shows that ZnCl₂ has a catalytic effect on CO₂ path and the catalytic effect can be finely tuned with variation of ZnCl₂ concentration. NaCl has an effect to slow down the catalytic effect of ZnCl₂ on CO₂ production and can be used to modulate the role of ZnCl₂ and to switch the reaction path from CO₂ to CO production. The present procedure can be used to produce HCOOH with minimum loss of decomposition into CO₂ and to produce H₂ from HCOOH with minimum loss into CO.

The procedure developed here can be used for the in selective path control of HCOOH decomposition in hot water with $ZnCl_2$ and NaCl. When HCOOH is produced from CO gas, the reaction rate of the production from CO to HCOOH is desired to be enhanced without accelerating the loss of HCOOH into CO₂, while the decarboxylation of HCOOH needs to be accelerated when H₂ is taken out from HCOOH. The present findings can be used to improve the effectiveness of the control of the competing reaction pathways from HCOOH to CO and CO₂.