Evaluation and Applications of Highly Chloride-Selective Cyclic Amide Compounds

Shin-ichi Kondo

Department of Material and Biological Chemistry, Faculty of Science, Yamagata University

Summary

Recognition of chloride anion is one of the important topics in molecular recognition chemistry since chloride anion plays crucial roles in living cells and environment. Cyclic bisurea derivatives **2** were designed for construction of a highly chloride-selective artificial anon receptor. Receptor **2a** can be obtained by the reaction of a diamine **3** and a diisocyanate **4** in the presence of TBACI as a template. Guest free **2a** was successfully prepared from **2a**·Cl⁻ with silver nitrate in DMSO. The solubility of **2a** in common organic solvent is very low, however **2a** can be soluble in DMSO. The structure of **2a** was identified by NMR spectroscopies including 2D NMR techniques. In the ¹H NMR spectrum of **2a**, large upfield shifts of N-H and 1 C-H groups were observed comparing with those of **2a**·Cl⁻ complex indicating that chloride anion was hydrogen bonded by these groups. This result is strongly supported by X-ray crystallographic analysis.

UV-vis spectroscopic titrations of **2a** with anions were performed in 18% DMSO-MeCN (v/v). Small bathochromic shift at 320 nm of **2a** was observed upon the addition of chloride anion. The association constant of **2a** with Cl⁻ was calculated to be $1.57 \pm 0.09 \times 10^5$ mol⁻¹dm³ by a non-linear curve fitting program and the value was 2.73-fold larger than that with AcO⁻. However, the association constants of acyclic analog **1a** with these anions were one order of magnitude smaller than those of **2a**. These results suggest that receptor **2a** is highly selective for chloride anion.

An introduction of bulky substitutions of **2a** was performed to increase the solubility of **2a**. During course of the study, the introduction of t-butyl group to naphthyl moiety was achieved to give a cyclic bisurea derivative **2b** as a novel receptor.