No. 1029

Role of Potassium Ion in Oxidative Stress at the Heart

Junko Kurokawa, Tetsushi Furukawa

Medical Research Institute, Tokyo Medical and Dental University

Summary

We have demonstrated that progesterone (P₄) or testosterone (DHT) suppress a cAMP-stimulated L-type Ca²⁺ currents (I_{Ca,L}) cGMP-dependently, whereas P₄ or DHT enhance I_{Ks} channel currents (I_{Ks}) cGMP-independently without cAMP-stimulation. Upon the enhancement of I_{Ks}, cysteine at 445 in the C-terminus of KCNQ1 (α subunit of the I_{Ks} channel) is *S*-nitrosylated by NO production stimulated by P₄ or DHT. Here, we found that oxidative stress by H₂O₂ suppressed I_{Ks}. Mutagenesis analysis (Cys-scanning) revealed that the suppression of I_{Ks} is controlled by Cys 642 in the C-terminus of KCNQ1. Actually, patch-clamp assay in native cardiomyocyte suggested that the suppression involves cAMP/NO signaling crosstalk. Therefore, we investigated substantial fraction of sex hormonal signaling molecules and cAMP signaling molecules around PDE2 in caveolae. The impact on the function would be a future study.