No. 0909

Roles of Tight Junction in Na⁺ Homeostasis and Glucose Absorption in the Small Intestine

Yuichi Suzuki, Atsushi Tamura and Sachiko Tsukita

Laboratory of Physiology, School of Food and Nutritional Sciences, University of Shizuoka

Summary

Many nutrients are absorbed by Na⁺-coupled transport mechanism in the intestine. Yet, how the intestine meet the requirement of Na⁺ for nutrient absorption remains unknown. One possible mechanism is paracellular pathway. It is contemplated that Na⁺ diffuses back into the lumen via its pathway because of the lumen-negative potential difference induced by Na⁺-coupled transport. The claudin family of transmembrane tight junction proteins is critical in determining the paracellular ionic permeability and selectivity. To investigate the role of paracellular Na⁺ permeability for Na⁺-coupled glucose absorption, we used claudin-15 knockout (cldn15^{-/-}) mice and measured the electric parameters in Ussing chambers. Moreover, we determined the absorption rate of glucose and Na⁺ by intestinal perfusion in vivo. The electric conductance in cldn15^{-/-} mice was decreased compared to that in the wild mice (18 vs. 41 mS/cm²). Dilution potential (DP) was measured while lowering apical NaCl concentration. DP was significantly decreased in $cldn15^{-/-}$ mice compared to that in wild mice (-0.5 vs 9.7 mV). From this results permeability ratio (P_{Na}/P_{CI}) between Na⁺ and Cl⁻ for paracellular pathways was estimated to be decreased in cldn15^{-/-} mice (1.0 vs. 3.2). When the jejunum was perfused with 15 mM Na⁺ solution without glucose, Na⁺ absorption was observed in cldn15^{-/-} mice while Na⁺ secretion in wild mice. Addition of glucose to the perusate caused an increase of Na⁺ absorption in cldn15^{-/-} mice but not in wild mice. These results suggest that Na⁺ is rapidly recycled from blood side to the lumen presumably through the cldn15-based, cation selective paracellular pore to maintain the Na⁺-dependent glucose absorption.