Regulation of WNK4-OSR1/SPAK-NCC Cascade by Dietary Sodium Intake

Shinichi Uchida, Department of Nephrology, Graduate School, Tokyo Medical and Dental University. Tatemitsu Rai, Department of Blood Purification, Tokyo Medical and Dental University.

Summary

Pseudohypoaldosteronism type II (PHAII) is an autosomal-dominant disorder characterized by hyperkalemia, acidosis, and hypertension. We recently found the activation of WNK-OSR1/SPAK-NaCl cotransporter (NCC) kinase cascade in the $Wnk4^{D561A}$ knockin mice, a mouse model of PHAII. Phosphorylated NCC was concentrated on the apical plasma membranes of the distal tubules in the kidneys, resulting in increased thiazide-sensitive volume expansion and hypertension. To investigate whether this phosphorylation cascade is involved in physiological situations in addition to the disease state (PHAII), we measured the phosphorylation status of OSR1/SPAK and NCC in mice that were fed low-, normal-, and high-sodium diets. We found that the phosphorylation of OSR1/SPAK and NCC was increased by a low-sodium diet and decreased by a high-sodium diet and that this regulation by dietary sodium intake was completely lost in the $Wnk4^{D561A}$ knockin mice. The increased phosphorylation under low-sodium diet was inhibited by spironolactone infusion, and the decreased phosphorylation under high-sodium diet was reversed by exogenous aldosterone infusion. Thus, the WNK4 -OSR1/SPAK-NCC cascade is a novel effecter system of aldosterone in the kidneys that regulates the body's sodium balance.