Design of Effective Photosterilization Field with Titanium Dioxide under Common Light Sources: Enhancement of Deactivation Activity Based on Synergy Effect of NaCl

Masahito Taya, Motomu Nishioka

Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University

Summary

For maintaining our surroundings biologically clean, in recent years, TiO_2 photosterilization has attracted increasing attention because of its stable and strong oxidative power yielding biocidal activity. In a practical aspect of TiO_2 photosterilization system, it should be a problem to be solved that UV rays effective for photo-exciting TiO_2 are very weak in living-based light sources such as a white light fluorescent lamp, which is an obstacle to realize sufficient biocidal activity of TiO_2 for inactivating biohazardous microorganisms and viruses. It has been reported that the enhancement of photocatalytic activity of TiO_2 took place through converting photo-generated H_2O_2 into more reactive •OH via copper-mediated Fenton-type reactions. In the present study, the deactivation of phage was examined using photocatalytic TiO_2 thin films with copper under an ambient lighting condition with a white light fluorescent lamp and the synergy effect of inorganic salts on the deactivation activity.

The copper-aided photo-deactivation of *Escherichia* coli phage was tested on TiO_2 thin films under a illuminating condition of poor UV rays with a white light fluorescent lamp. It was found that the deactivation activity of TiO_2 thin film with $CuCl_2$ was remarkably enhanced with the coexistence of NaCl. However, the coexistence of $CuCl_2$ and NaCl did not affect the deactivation activity on a glass plate without TiO_2 , indicating that four factors, i.e., $CuCl_2$, NaCl, TiO_2 and light, were requisite for the enhancement of photo-deactivation activity under an ambient lighting condition. Next, the effect of coexistence of KCl or NaNO₃ on the deactivation activity was examined to clarify contribution of Na⁺ and Cl⁻. An equivalent increase in activity, indicating that existence of Cl⁻ is essential to encourage the activity. Assuming that Cu^{2+} is reduced to Cu^+ by receiving electron from photo-excited TiO_2 and then Cu^+ reacts with photocatalysis-derived H_2O_2 to produce •OH via a Fenton-like reaction, we proposed a possible mechanism that Cl⁻ stabilizes Cu^+ through complex ion formation and thereby enhances the Fenton-like reaction.