Development of Photochemical Organic Synthesis Using Carbonate in Sea Water

Yutaka Amao

Department of Applied Chemistry, Oita University

Summary

Carbon dioxide fixation is a potential technology for the realization of photocatalytic CO₂ reduction. Many studies on CO₂ fixation have investigated photocatalysis on semiconductors such as titanium dioxide, silicone carbide and strontium titanate. However, these systems used ultraviolet irradiation, whereas a CO₂ fixation system using visible light is more desirable. In contrast, biological CO₂ fixation systems have also received much attention. For example, CO₂ or HCO₃⁻ can be reduced to formic acid with formate dehydrogenase (FDH) and NADH. Therefore, a CO₂ fixation system that combines the photoreduction of NAD⁺ with photosensitizer and ferredoxin-NADP⁺ reductase, and HCO₃⁻ reduction with FDH can be established.

In this work, photochemical synthesis of malic acid was investigated from pyruvic acid and HCO₃⁻ (in sea water) with malic enzyme (ME) and NADP⁺ photoreduction by the visible light photosensitization of zinc chlorin-e₆ (Zn Chl-e₆) in the presence of NADH as an electron-donating reagent. Irradiation of a solution containing NADH, Zn Chl-e₆, methylviologen (MV²⁺), pyruvic acid, NaHCO₃, NADP⁺, ferredoxine-NADP-reductase (FNR) and ME with visible light resulted in malic acid synthesis. The produced malic acid was 0.65 mmol dm⁻³ after 3 h irradiation. Moreover, produced the malic acid was up to 2.10 mmol dm⁻³ after 3 h irradiation under 0.01 m mmol dm⁻³ NADP⁺ condition, and the conversion ratio of pyruvic acid to malic acid was about 20.0 %.