Kinetic analysis of catalytic decomposition of chelate-chromoionophore for prompt and accurate determination of sodium in concentrated sea water

UEHARA Nobuo

Utsumoniya University, Fuculty of Engineering, Department of Applied Chemistry

Summary

1. Introduction

Precious and accurate analytical methods for sodium in concentrated sea water have been required in a manufacture process in salt plants. We have developed a direct analytical method for sodium ion in a concentrated sea water by a flow injection analysis (FIA) using a decompasition reaction of a chelate-chromoionophore. In this study, we investigated a kinetic analysis of the catalytic decomposition of the chelate-chromoionophore with sodium ion for the FIA analysis of sodium in concentrated sea water.

2. Experiment

Ammonium 1, 4, 7, 10, 13- pentaoxa- 16- azacyclooctadecane-*N*- carbodithioate (A18CC) was synthesized from 1-aza-18-crown-6 and carbondisulfide. Heavy metal-chelates of A18CC were synthesized from A18CC and chloride salts of heavy metal. Absorbance of heavy metal-chelates of A18CC was monitored at appropriate wavelength after mixing heavy metal-chelates of A18CC solution and alkali, alkaline earth metal chloride solutions.

3. Results and discussion

A specific catalytic decomposition of heavy metal-chelates of A18CC was observed in a combination of only Co^{II}-A18CC and sodium ion among various combination of heavy metal-ionophores and alkali, alkaline earth metal ions. Some oxidants, such as peroxodisulfide, prompted the decomposition, whereas some reductants, such as methanol, inhibited the decomposition. A kinetic analysis of the decomposition reaction of Co^{II}-A18CC with sodium ion indicated that the reaction was obeyed with first order for concentration of Co^{II}-A18CC and second order for sodium ion. The resulting expression is as follows;

$$\frac{d[\text{Co-A18CC}]}{dt} = -7.4 \times 10^{-5} [\text{Na}^+]^2 [\text{Co-A18CC}]$$

- 99 -