Spectroscopy Studies for the Microelement Ions Weights in the Solid State of NaCl - Foods

Hideo Fujita*, ** Hiroaki Ohya-Nishiguchi***, Kunihiko Tajima*, Souhei Fukui*, Satoru Tanaka**, and Toshiaki Watanabe**

*Faculty of Integrated Human Studies, Kyoto University (Present: **School of Humanities for Environmental Policy and Technology, Himeji Institute of Technology), ***Institute for Life Support Technology, *Department of Applied Biology, Kyoto Institute of Technology, and **Horiba Limited Company

Summary

In our investigation we paid a lot of attention to typical NaCl-foods, from which we observed very characteristic manganese two-value ions (Mn²⁺) signals different from usual Mn²⁺ patterns so far obtained. Electron spin resonance (ESR) signals unusually conterminous a very sharp line at g=2, which is assigned to be kind of free radical species. Another signal is due to Mn²⁺, which gives six hyperfine splitting with equivalent intensity owing to the nuclear spin I=5/2 of Mn nuclei. In typical NaCl-foods, however, the Mn²⁺ signals exhibit non-equivalent hyperfine intensity with relatively much higher intensity in the central groups.

Microelement ions weights in the solid state of NaCl-foods were developed by means of ESR. These Studies were reported Mn²⁺ weights of NaCl-foods, for example, Uji-cha(maccha); $195.00~\mu$ g/g and red hibiscus(Hibiscus sabdariffa)-cha; $216.00~\mu$ g/g. The data suggest that are related with the effect and the mechanism of Mn-superoxide dismutase (SOD).