Roles of Ca²⁺ and Cl⁻ in Na⁺ transport and clearance of lung fluid in fetal lung Yoshinori Marunaka, Naomi Niisato Department of Cellular and Molecular Physiology Kyoto Prefectural University of Medicine ## Summary To clarify roles of Ca²⁺ and Cl⁻ in regulation of amiloride-sensitive Na⁺ transport in rat fetal distal lung epithelial (FDLE) cells, we measured single channel currents from cell-attached and inside-out patches formed on the apical FDLE had two types of amiloride-sensitive Na⁺membrane of FDLE. permeable cation channels: nonselective cation (NSC) and Na⁺ channels. Only the NSC channel responded to a beta adrenoceptor agonist (beta agonist), but the Na⁺ channel did not. Therefore, we focused our study on the NSC channel. A beta agonist increased the cytosolic Ca²⁺ concentration ([Ca²⁺]_c) and decreased cytosolic Cl⁻ concentration ([Cl⁻]_c). The NSC channel was activated by cytosolic Ca²⁺, while the channel was inhibited by cytosolic Cl⁻. Therefore, we studied which factor, an increase in [Ca²⁺]_c or a decrease in [Cl]_c caused by a beta agonist, played an essential role in stimulation of the channel leading to an increase in the Na⁺ transport and clearance of lung fluid. Our study indicates that the increase in [Ca²⁺]_c plays an important role in decreasing the [Cl]_c, however the beta-agonist-caused decrease in [Cl]_c essentially activates the NSC channel. Based on these results, we conclude that that the extracellular Ca²⁺ plays an important role in the stimulatory action of beta agonist on the NSC channel and Na⁺ reabsorption leading to fetal lung fluid clearance via reduction of [Cl]c.