DETECTION OF CENTRAL ACTIVATION BY MANGANESE ION CONTRASTED T_1 -WEIGHTED MAGNETIC RESONANCE IMAGING IN RATS Hironobu Morita¹, Takashi Ogino², Yoshiteru Seo³, Masataka Murakami⁴ From the ¹Department of Integrative Physiology, Gifu University School of Medicine, 40 Tsukasa-Machi, Gifu 500-8705, Japan, ²Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan, ³Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan, and the ⁴Department of Molecular Physiology, National Institute for Physiological Sciences, Okazaki, Japan ## Summary To examine the usefulness of Mn²⁺ contrasted MRI in central imaging, images obtained using T₁-weighted MRI were compared with Fos expression, which is known to increase after activation of voltage-dependent Ca²⁺ channels. Intravenous infusion of MnCl₂ elicited a rapid increase in the T₁-weighted MRI signal intensity in the vessels and ventricles, but not in the brain parenchyma, suggesting that Mn²⁺ did not diffuse freely across the blood-brain barrier. When the blood-brain barrier was broken by right intracarotid arterial injection of 25 % D-mannitol, an increased signal intensity was seen in the right brain. Intracarotid arterial injection of hypertonic NaCl elicited rapid and striking increases in signal intensity in the parayentricular hypothalamic nucleus, supraoptic nucleus, and preoptic area, which are thought to be involved in central osmotic regulation. These observations were consistent with the Fos expression results. Using this technique, a time course of central activation induced by an intracerebroventricular injection of hypertonic NaCl solution was detected. Furthermore, a central activation induced by more physiological stimulus, i.e., an oral administration of hypertonic NaCl was also detected. These results indicate that Mn2+ contrasted MRI has reasonable spatial and temporal resolution and is a useful technique for investigating a functional activation of the brain.