Study on Preparation of Nutrient-fortified *Spirulina plantensis*(Inactive Vitamin B₁₂-Compound Significantly Decreases in *Spirulina platensis* Grown in a Cobalt-Deficient Medium)

Fumio WATANABE (Department of Health Science, Kochi Women's University)
Emi MIYAMOTO (Department of Health Science, Kochi Women's University)

Summary

Spirulina platensis NIES-39 was grown under open culture system in the presence or absence of $CoSO_4(12 \ \mu g/L)$ and/or vitamin $B_{12}(10 \ \mu g/L)$ to confirm whether $CoSO_4$ and/or vitamin B_{12} stimulate or are essential for growth of the algal cells and for accumulation of vitamin B_{12} -compound. The addition of $CoSO_4$ and/or vitamin B_{12} could not affect both cell growth and cell yield of the alga.

The amount of vitamin B_{12} -compound in the algal cells was determined. The amount of B_{12} -compound was increased significantly by the addition of $CoSO_4$, but not by vitamin B_{12} . A C18 reversed-phase HPLC pattern of the *Spirulina* B_{12} -compound increased by the addition of $CoSO_4$ was identical to that of authentic pseudovitamin B_{12} , which is inactive for human. These results indicate that the algal cells grown in the absence of $CoSO_4$ are suitable for use of human health foods because the inactive vitamin B_{12} -compound can be reduced significantly.